AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tomography, X-Ray Computed

Showing 391 to 400 of 4535 articles

Clear Filters

A Physics-Informed Deep Neural Network for Harmonization of CT Images.

IEEE transactions on bio-medical engineering
OBJECTIVE: Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs).

Artificial intelligence contouring in radiotherapy for organs-at-risk and lymph node areas.

Radiation oncology (London, England)
INTRODUCTION: The delineation of organs-at-risk and lymph node areas is a crucial step in radiotherapy, but it is time-consuming and associated with substantial user-dependent variability in contouring. Artificial intelligence (AI) appears to be the ...

Resolution-dependent MRI-to-CT translation for orthotopic breast cancer models using deep learning.

Physics in medicine and biology
This study aims to investigate the feasibility of utilizing generative adversarial networks (GANs) to synthesize high-fidelity computed tomography (CT) images from lower-resolution MR images. The goal is to reduce patient exposure to ionizing radiati...

An AI deep learning algorithm for detecting pulmonary nodules on ultra-low-dose CT in an emergency setting: a reader study.

European radiology experimental
BACKGROUND: To retrospectively assess the added value of an artificial intelligence (AI) algorithm for detecting pulmonary nodules on ultra-low-dose computed tomography (ULDCT) performed at the emergency department (ED).

A systematic review on feature extraction methods and deep learning models for detection of cancerous lung nodules at an early stage -the recent trends and challenges.

Biomedical physics & engineering express
Lung cancer is one of the most common life-threatening worldwide cancers affecting both the male and the female populations. The appearance of nodules in the scan image is an early indication of the development of cancer cells in the lung. The Low Do...

Evaluation of SR-DLR in low-dose abdominal CT: superior image quality and noise reduction.

Abdominal radiology (New York)
OBJECTIVES: To evaluate the effectiveness of super-resolution deep learning reconstruction (SR-DLR) in low-dose abdominal computed tomography (CT) imaging compared with hybrid iterative reconstruction (HIR) and conventional deep learning reconstructi...

Minimally interactive segmentation of soft-tissue tumors on CT and MRI using deep learning.

European radiology
BACKGROUND: Segmentations are crucial in medical imaging for morphological, volumetric, and radiomics biomarkers. Manual segmentation is accurate but not feasible in clinical workflow, while automatic segmentation generally performs sub-par.

Using machine learning to develop a stacking ensemble learning model for the CT radiomics classification of brain metastases.

Scientific reports
The objective of this study was to explore the potential of machine-learning techniques in the automatic identification and classification of brain metastases from a radiomic perspective, aiming to improve the accuracy of tumor volume assessment for ...

Computer tomography-based radiomics combined with machine learning for predicting the time since onset of epidural hematoma.

International journal of legal medicine
Estimation of the age of epidural hematoma (EDH) is a challenge in clinical forensic medicine, and this issue has yet to be conclusively resolved. The advantages of objectivity and non-invasiveness make computing tomography (CT) imaging an potential ...