IEEE transactions on bio-medical engineering
Nov 21, 2024
OBJECTIVE: Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs).
INTRODUCTION: The delineation of organs-at-risk and lymph node areas is a crucial step in radiotherapy, but it is time-consuming and associated with substantial user-dependent variability in contouring. Artificial intelligence (AI) appears to be the ...
This study aims to investigate the feasibility of utilizing generative adversarial networks (GANs) to synthesize high-fidelity computed tomography (CT) images from lower-resolution MR images. The goal is to reduce patient exposure to ionizing radiati...
BACKGROUND: To retrospectively assess the added value of an artificial intelligence (AI) algorithm for detecting pulmonary nodules on ultra-low-dose computed tomography (ULDCT) performed at the emergency department (ED).
Biomedical physics & engineering express
Nov 20, 2024
Lung cancer is one of the most common life-threatening worldwide cancers affecting both the male and the female populations. The appearance of nodules in the scan image is an early indication of the development of cancer cells in the lung. The Low Do...
PURPOSE: The aim of this study was to develop and validate a prediction model for classification of pulmonary nodules based on preoperative CT imaging.
OBJECTIVES: To evaluate the effectiveness of super-resolution deep learning reconstruction (SR-DLR) in low-dose abdominal computed tomography (CT) imaging compared with hybrid iterative reconstruction (HIR) and conventional deep learning reconstructi...
BACKGROUND: Segmentations are crucial in medical imaging for morphological, volumetric, and radiomics biomarkers. Manual segmentation is accurate but not feasible in clinical workflow, while automatic segmentation generally performs sub-par.
The objective of this study was to explore the potential of machine-learning techniques in the automatic identification and classification of brain metastases from a radiomic perspective, aiming to improve the accuracy of tumor volume assessment for ...
International journal of legal medicine
Nov 18, 2024
Estimation of the age of epidural hematoma (EDH) is a challenge in clinical forensic medicine, and this issue has yet to be conclusively resolved. The advantages of objectivity and non-invasiveness make computing tomography (CT) imaging an potential ...