BACKGROUND: Self-supervised pre-training of deep learning models with contrastive learning is a widely used technique in image analysis. Current findings indicate a strong potential for contrastive pre-training on medical images. However, further res...
BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent tumor with high mortality rates. Computed tomography (CT) is crucial in the non-invasive diagnosis of HCC. Recent advancements in artificial intelligence (AI) have shown significant potential ...
The field of radiology imaging has experienced a remarkable increase in using of deep learning (DL) algorithms to support diagnostic and treatment decisions. This rise has led to the development of Explainable AI (XAI) system to improve the transpare...
Medical dosimetry : official journal of the American Association of Medical Dosimetrists
Oct 8, 2024
PURPOSE: This study evaluated the accuracy of a commercial deep learning (DL)-based algorithm for segmenting the prostate, seminal vesicles (SV), and organs at risk (OAR) in patients with prostate cancer.
Focal liver lesions (FLL) are common incidental findings in abdominal imaging. While the majority of FLLs are benign and asymptomatic, some can be malignant or pre-malignant, and need accurate detection and classification. Current imaging techniques,...
PURPOSE: To assess the efficacy of radiomics features extracted from non-contrast computed tomography (NCCT) scans in differentiating multiple etiologies of spontaneous intracerebral hemorrhage (ICH).
OBJECTIVES: This study was designed to assess computed tomography (CT)-based radiomics of colorectal liver metastases (CRLM), extracted from posttreatment scans in estimating pathologic treatment response to neoadjuvant therapy, and to compare treatm...
RATIONALE AND OBJECTIVES: Efficient communication between radiologists and clinicians ordering computed tomography (CT) examinations is crucial for managing high-risk incidental CT findings (ICTFs). Herein, we introduced a Radiologist's Alert and Pat...
OBJECTIVES: To (1) construct a virtual patient (VP) using facial scan, intraoral scan, and low-dose computed tomography scab based on an Artificial intelligence (AI)-approach, (2) quantitatively compare it with AI-refined and semi-automatic registrat...
The application of machine learning to tasks involving volumetric biomedical imaging is constrained by the limited availability of annotated datasets of three-dimensional (3D) scans for model training. Here we report a deep-learning model pre-trained...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.