BACKGROUND: Dual-energy computed tomography (DECT) and material decomposition play vital roles in quantitative medical imaging. However, the decomposition process may suffer from significant noise amplification, leading to severely degraded image sig...
PURPOSE: Early identification of hematoma enlargement and persistent hematoma expansion (HE) in patients with cerebral hemorrhage is increasingly crucial for determining clinical treatments. However, due to the lack of clinically effective tools, rad...
Journal of imaging informatics in medicine
Jun 11, 2024
Non-small cell lung carcinoma (NSCLC) is the most common type of pulmonary cancer, one of the deadliest malignant tumors worldwide. Given the increased emphasis on the precise management of lung cancer, identifying various subtypes of NSCLC has becom...
Journal of imaging informatics in medicine
Jun 11, 2024
This study aims to develop a CT-based hybrid deep learning network to predict pathological subtypes of early-stage lung adenocarcinoma by integrating residual network (ResNet) with Vision Transformer (ViT). A total of 1411 pathologically confirmed gr...
Cerebral computed tomography perfusion (CTP) imaging requires complete acquisition of contrast bolus inflow and washout in the brain parenchyma; however, time truncation undoubtedly occurs in clinical practice. To overcome this issue, we proposed a t...
BACKGROUND: Deep learning models (DLMs) using preoperative computed tomography (CT) imaging have shown promise in predicting outcomes following abdominal wall reconstruction (AWR), including component separation, wound complications, and pulmonary fa...
OBJECTIVE: To evaluate the consistency between doctors and artificial intelligence (AI) software in analysing and diagnosing pulmonary nodules, and assess whether the characteristics of pulmonary nodules derived from the two methods are consistent fo...
Journal of imaging informatics in medicine
Jun 10, 2024
To develop a robust segmentation model, encoding the underlying features/structures of the input data is essential to discriminate the target structure from the background. To enrich the extracted feature maps, contrastive learning and self-learning ...
BACKGROUND AND OBJECTIVES: In light of limited intensive care capacities and a lack of accurate prognostic tools to advise caregivers and family members responsibly, this study aims to determine whether automated cerebral CT (CCT) analysis allows pro...