AIMC Topic: Transcription Factors

Clear Filters Showing 81 to 90 of 200 articles

HOX cluster and their cofactors showed an altered expression pattern in eutopic and ectopic endometriosis tissues.

Reproductive biology and endocrinology : RB&E
Endometriosis is major gynecological disease that affects over 10% of women worldwide and 30%-50% of these women have pelvic pain, abnormal uterine bleeding and infertility. The cause of endometriosis is unknown and there is no definite cure mainly b...

Gene Ontology representation for transcription factor functions.

Biochimica et biophysica acta. Gene regulatory mechanisms
Transcription plays a central role in defining the identity and functionalities of cells, as well as in their responses to changes in the cellular environment. The Gene Ontology (GO) provides a rigorously defined set of concepts that describe the fun...

Discovering differential genome sequence activity with interpretable and efficient deep learning.

PLoS computational biology
Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Patt...

Prioritizing and characterizing functionally relevant genes across human tissues.

PLoS computational biology
Knowledge of genes that are critical to a tissue's function remains difficult to ascertain and presents a major bottleneck toward a mechanistic understanding of genotype-phenotype links. Here, we present the first machine learning model-FUGUE-combini...

DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence.

International journal of molecular sciences
Predicting in vivo protein-DNA binding sites is a challenging but pressing task in a variety of fields like drug design and development. Most promoters contain a number of transcription factor (TF) binding sites, but only a small minority has been id...

Machine learning predicts nucleosome binding modes of transcription factors.

BMC bioinformatics
BACKGROUND: Most transcription factors (TFs) compete with nucleosomes to gain access to their cognate binding sites. Recent studies have identified several TF-nucleosome interaction modes including end binding (EB), oriented binding, periodic binding...

Epigenetic Target Fishing with Accurate Machine Learning Models.

Journal of medicinal chemistry
Epigenetic targets are of significant importance in drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represe...

An Integrative Framework for Combining Sequence and Epigenomic Data to Predict Transcription Factor Binding Sites Using Deep Learning.

IEEE/ACM transactions on computational biology and bioinformatics
Knowing the transcription factor binding sites (TFBSs) is essential for modeling the underlying binding mechanisms and follow-up cellular functions. Convolutional neural networks (CNNs) have outperformed methods in predicting TFBSs from the primary D...

DeepGRN: prediction of transcription factor binding site across cell-types using attention-based deep neural networks.

BMC bioinformatics
BACKGROUND: Due to the complexity of the biological systems, the prediction of the potential DNA binding sites for transcription factors remains a difficult problem in computational biology. Genomic DNA sequences and experimental results from paralle...