AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ultrasonography

Showing 121 to 130 of 1229 articles

Clear Filters

WFUMB Commentary Paper on Artificial intelligence in Medical Ultrasound Imaging.

Ultrasound in medicine & biology
Artificial intelligence (AI) is defined as the theory and development of computer systems able to perform tasks normally associated with human intelligence. At present, AI has been widely used in a variety of ultrasound tasks, including in point-of-c...

Performance of automated machine learning in detecting fundus diseases based on ophthalmologic B-scan ultrasound images.

BMJ open ophthalmology
AIM: To evaluate the efficacy of automated machine learning (AutoML) models in detecting fundus diseases using ocular B-scan ultrasound images.

A dual-decoder banded convolutional attention network for bone segmentation in ultrasound images.

Medical physics
BACKGROUND: Ultrasound (US) has great potential for application in computer-assisted orthopedic surgery (CAOS) due to its non-radiative, cost-effective, and portable traits. However, bone segmentation from low-quality US images has been challenging. ...

Comparative Analysis of Nomogram and Machine Learning Models for Predicting Axillary Lymph Node Metastasis in Early-Stage Breast Cancer: A Study on Clinically and Ultrasound-Negative Axillary Cases Across Two Centers.

Ultrasound in medicine & biology
OBJECTIVE: Early and accurate prediction of axillary lymph node metastasis (ALNM) is crucial in determining appropriate treatment strategies for patients with early-stage breast cancer. The aim of this study was to evaluate the efficacy of radiomic f...

Comparison of deep learning schemes in grading non-alcoholic fatty liver disease using B-mode ultrasound hepatorenal window images with liver biopsy as the gold standard.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
BACKGROUND/INTRODUCTION: To evaluate the performance of pre-trained deep learning schemes (DLS) in hepatic steatosis (HS) grading of Non-Alcoholic Fatty Liver Disease (NAFLD) patients, using as input B-mode US images containing right kidney (RK) cort...

Mitigating Aberration-Induced Noise: A Deep Learning-Based Aberration-to- Aberration Approach.

IEEE transactions on medical imaging
One of the primary sources of suboptimal image quality in ultrasound imaging is phase aberration. It is caused by spatial changes in sound speed over a heterogeneous medium, which disturbs the transmitted waves and prevents coherent summation of echo...

Ultrasound Versus Elastography in the Diagnosis of Hepatic Steatosis: Evaluation of Traditional Machine Learning Versus Deep Learning.

Sensors (Basel, Switzerland)
The prevalence of fatty liver disease is on the rise, posing a significant global health concern. If left untreated, it can progress into more serious liver diseases. Therefore, accurately diagnosing the condition at an early stage is essential for m...

Active Inference and Deep Generative Modeling for Cognitive Ultrasound.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound (US) has the unique potential to offer access to medical imaging to anyone, everywhere. Devices have become ultraportable and cost-effective, akin to the stethoscope. Nevertheless, and despite many advances, US image quality and diagnostic...

Investigating the Use of Traveltime and Reflection Tomography for Deep Learning-Based Sound-Speed Estimation in Ultrasound Computed Tomography.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound computed tomography (USCT) quantifies acoustic tissue properties such as the speed-of-sound (SOS). Although full-waveform inversion (FWI) is an effective method for accurate SOS reconstruction, it can be computationally challenging for lar...