AIMC Topic: Unsupervised Machine Learning

Clear Filters Showing 31 to 40 of 797 articles

Unsupervised brain MRI tumour segmentation via two-stage image synthesis.

Medical image analysis
Deep learning shows promise in automated brain tumour segmentation, but it depends on costly expert annotations. Recent advances in unsupervised learning offer an alternative by using synthetic data for training. However, the discrepancy between real...

Unsupervised Domain Adaptation for Cross-Modality Cerebrovascular Segmentation.

IEEE journal of biomedical and health informatics
Cerebrovascular segmentation from time-of-flight magnetic resonance angiography (TOF-MRA) and computed tomography angiography (CTA) is essential in providing supportive information for diagnosing and treatment planning of multiple intracranial vascul...

SFM-Net: Semantic Feature-Based Multi-Stage Network for Unsupervised Image Registration.

IEEE journal of biomedical and health informatics
It is difficult for general registration methods to establish the fine correspondence between images with complex anatomical structures. To overcome the above problem, this work presents SFM-Net, an unsupervised multi-stage semantic feature-based net...

CorrMorph: Unsupervised Deformable Brain MRI Registration Based on Correlation Mining.

IEEE journal of biomedical and health informatics
Deformable image registration, as a fundamental prerequisite for many medical image analysis tasks, has received considerable attention. However, existing methods suffer from two key issues: 1) single-stream methods that stack moving and fixed images...

Exploring Contrastive Pre-Training for Domain Connections in Medical Image Segmentation.

IEEE transactions on medical imaging
Unsupervised domain adaptation (UDA) in medical image segmentation aims to improve the generalization of deep models by alleviating domain gaps caused by inconsistency across equipment, imaging protocols, and patient conditions. However, existing UDA...

Definition of the microbial rare biosphere through unsupervised machine learning.

Communications biology
The microbial rare biosphere, composed of low-abundance microorganisms in a community, lacks a standardized delineation method for its definition. Currently, most studies rely on arbitrary thresholds to define the microbial rare biosphere (e.g., 0.1%...

Improved unsupervised 3D lung lesion detection and localization by fusing global and local features: Validation in 3D low-dose computed tomography.

Medical image analysis
Unsupervised anomaly detection (UAD) is crucial in low-dose computed tomography (LDCT). Recent AI technologies, leveraging global features, have enabled effective UAD with minimal training data of normal patients. However, this approach, devoid of ut...

Unsupervised Deep Learning of Electronic Health Records to Characterize Heterogeneity Across Alzheimer Disease and Related Dementias: Cross-Sectional Study.

JMIR aging
BACKGROUND: Alzheimer disease and related dementias (ADRD) exhibit prominent heterogeneity. Identifying clinically meaningful ADRD subtypes is essential for tailoring treatments to specific patient phenotypes.

Adaptive bigraph-based multi-view unsupervised dimensionality reduction.

Neural networks : the official journal of the International Neural Network Society
As a crucial machine learning technology, graph-based multi-view unsupervised dimensionality reduction aims to learn compact low-dimensional representations for unlabeled multi-view data using graph structures. However, it faces several challenges, i...