AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Whole Body Imaging

Showing 1 to 10 of 67 articles

Clear Filters

Personalized melanoma grading system: a presentation of a patient with four melanomas detected over two decades with evolving whole-body imaging and artificial intelligence systems.

Dermatology online journal
Melanoma is a life-threatening tumor that significantly impacts individuals' health and society worldwide. Therefore, its diagnostic tools must be revolutionized, representing the most remarkable human efforts toward successful management. This retro...

A deep learning method for total-body dynamic PET imaging with dual-time-window protocols.

European journal of nuclear medicine and molecular imaging
PURPOSE: Prolonged scanning durations are one of the primary barriers to the widespread clinical adoption of dynamic Positron Emission Tomography (PET). In this paper, we developed a deep learning algorithm that capable of predicting dynamic images f...

Deep learning-based body composition analysis from whole-body magnetic resonance imaging to predict all-cause mortality in a large western population.

EBioMedicine
BACKGROUND: Manually extracted imaging-based body composition measures from a single-slice area (A) have shown associations with clinical outcomes in patients with cardiometabolic disease and cancer. With advances in artificial intelligence, fully au...

CT-Less Whole-Body Bone Segmentation of PET Images Using a Multimodal Deep Learning Network.

IEEE journal of biomedical and health informatics
In bone cancer imaging, positron emission tomography (PET) is ideal for the diagnosis and staging of bone cancers due to its high sensitivity to malignant tumors. The diagnosis of bone cancer requires tumor analysis and localization, where accurate a...

Comparative analysis of intestinal tumor segmentation in PET CT scans using organ based and whole body deep learning.

BMC medical imaging
BACKGROUND: 18-Fluoro-deoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is a valuable imaging tool widely used in the management of cancer patients. Deep learning models excel at segmenting highly metabolic tumors but face ch...

Development and validation of fully automated robust deep learning models for multi-organ segmentation from whole-body CT images.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: This study aimed to develop a deep-learning framework to generate multi-organ masks from CT images in adult and pediatric patients.

Development and validation of pan-cancer lesion segmentation AI-model for whole-body 18F-FDG PET/CT in diverse clinical cohorts.

Computers in biology and medicine
BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3DF-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site.

Automatic detecting multiple bone metastases in breast cancer using deep learning based on low-resolution bone scan images.

Scientific reports
Whole-body bone scan (WBS) is usually used as the effective diagnostic method for early-stage and comprehensive bone metastases of breast cancer. WBS images with breast cancer bone metastasis have the characteristics of low resolution, small foregrou...

HybrIK-X: Hybrid Analytical-Neural Inverse Kinematics for Whole-Body Mesh Recovery.

IEEE transactions on pattern analysis and machine intelligence
Recovering whole-body mesh by inferring the abstract pose and shape parameters from visual content can obtain 3D bodies with realistic structures. However, the inferring process is highly non-linear and suffers from image-mesh misalignment, resulting...

Evaluating Skellytour for Automated Skeleton Segmentation from Whole-Body CT Images.

Radiology. Artificial intelligence
Purpose To construct and evaluate the performance of a machine learning model for bone segmentation using whole-body CT images. Materials and Methods In this retrospective study, whole-body CT scans (from June 2010 to January 2018) from 90 patients (...