AIMC Topic: Young Adult

Clear Filters Showing 511 to 520 of 4806 articles

Bridging Neuroscience and Machine Learning: A Gender-Based Electroencephalogram Framework for Guilt Emotion Identification.

Sensors (Basel, Switzerland)
This study explores the link between the emotion "guilt" and human EEG data, and investigates the influence of gender differences on the expression of guilt and neutral emotions in response to visual stimuli. Additionally, the stimuli used in the stu...

Prediction of depressive disorder using machine learning approaches: findings from the NHANES.

BMC medical informatics and decision making
BACKGROUND: Depressive disorder, particularly major depressive disorder (MDD), significantly impact individuals and society. Traditional analysis methods often suffer from subjectivity and may not capture complex, non-linear relationships between ris...

Prediction of tuberculosis treatment outcomes using biochemical makers with machine learning.

BMC infectious diseases
BACKGROUND: Tuberculosis (TB) continues to pose a significant threat to global public health. Enhancing patient prognosis is essential for alleviating the disease burden.

Sensory-biased autoencoder enables prediction of texture perception from food rheology.

Food research international (Ottawa, Ont.)
Understanding how the physical properties of food affect sensory perception remains a critical challenge for food design. Here, we present an innovative machine learning strategy to decode the complex relationships between non-Newtonian rheological a...

Can AI-assisted objective facial attractiveness scoring systems replace manual aesthetic evaluations? A comparative analysis of human and machine ratings.

Journal of plastic, reconstructive & aesthetic surgery : JPRAS
BACKGROUND: In clinical practice, attaining a genuinely objective evaluation of facial aesthetics has posed considerable challenges owing to the inherent subjectivity of human observers. Artificial intelligence (AI) technology has demonstrated signif...

Machine learning models for prognosis prediction in regenerative endodontic procedures.

BMC oral health
BACKGROUND: This study aimed to establish and validate machine learning (ML) models to predict the prognosis of regenerative endodontic procedures (REPs) clinically, assisting clinicians in decision-making and avoiding treatment failure.

Development of a Wearable Sleeve-Based System Combining Polymer Optical Fiber Sensors and an LSTM Network for Estimating Knee Kinematics.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
This study presents a novel wearable solution integrating Polymer Optical Fiber (POF) sensors into a knee sleeve to monitor knee flexion/extension (F/E) patterns during walking. POF sensors offer advantages such as flexibility, light weight, and robu...

Classification of fundus autofluorescence images based on macular function in retinitis pigmentosa using convolutional neural networks.

Japanese journal of ophthalmology
PURPOSE: To determine whether convolutional neural networks (CNN) can classify the severity of central vision loss using fundus autofluorescence (FAF) images and color fundus images of retinitis pigmentosa (RP), and to evaluate the utility of those i...

Prediction of adverse pregnancy outcomes using machine learning techniques: evidence from analysis of electronic medical records data in Rwanda.

BMC medical informatics and decision making
BACKGROUND: Despite substantial progress in maternal and neonatal health, Rwanda's mortality rates remain high, necessitating innovative approaches to meet health related Sustainable Development Goals (SDGs). By leveraging data collected from Electro...