The early detection and diagnosis of gastrointestinal tract diseases, such as ulcerative colitis, polyps, and esophagitis, are crucial for timely treatment. Traditional imaging techniques often rely on manual interpretation, which is subject to varia...
BACKGROUND: Speckle tracking echocardiography (STE) provides quantification of left ventricular (LV) deformation and is useful in the assessment of LV function. STE is increasingly being used clinically, and every effort to simplify and standardize S...
BACKGROUND: This study aims to explore the accuracy of Convolutional Neural Network (CNN) models in predicting malignancy in Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging (DCE-BMRI).
BACKGROUND: Crohn's disease is a severe chronic and relapsing inflammatory bowel disease. Although contrast-enhanced computed tomography enterography is commonly used to evaluate crohn's disease, its imaging findings are often nonspecific and can ove...
OBJECTIVE: To conduct a systematic review of the computer vision applications that detect, diagnose, or analyse tuberculosis (TB) pathology or bacilli using digitised human lung tissue images either through automatic or semi-automatic methods. We cat...
Detecting brain tumors early on is critical for effective treatment and life-saving efforts. The analysis of the brain with MRI scans is fundamental to the diagnosis because it contains detailed structural views of the brain, which is vital in identi...
BACKGROUND: The impression section integrates key findings of a radiology report but can be subjective and variable. We sought to fine-tune and evaluate an open-source Large Language Model (LLM) in automatically generating impressions from the remain...
Breast cancer prediction and diagnosis are critical for timely and effective treatment, significantly impacting patient outcomes. Machine learning algorithms have become powerful tools for improving the prediction and diagnosis of breast cancer. The ...
PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1...
BACKGROUND: This study aims to utilize the deep learning method of VB-Net to locate and segment the trigeminal nerve, and employ radiomics methods to distinguish between CTN patients and healthy individuals.