AI Medical Compendium Journal:
BMC medicine

Showing 11 to 20 of 47 articles

Development of an artificial intelligence-based multimodal diagnostic system for early detection of biliary atresia.

BMC medicine
BACKGROUND: Early diagnosis of biliary atresia (BA) is crucial for improving patient outcomes, yet remains a significant global challenge. This challenge may be ameliorated through the application of artificial intelligence (AI). Despite the promise ...

Multi-cancer early detection based on serum surface-enhanced Raman spectroscopy with deep learning: a large-scale case-control study.

BMC medicine
BACKGROUND: Early detection of cancer can help patients with more effective treatments and result in better prognosis. Unfortunately, established cancer screening technologies are limited for use, especially for multi-cancer early detection. In this ...

Generative artificial intelligence (GAI) usage guidelines for scholarly publishing: a cross-sectional study of medical journals.

BMC medicine
BACKGROUND: Generative artificial intelligence (GAI) has developed rapidly and been increasingly used in scholarly publishing, so it is urgent to examine guidelines for its usage. This cross-sectional study aims to examine the coverage and type of re...

Comparison of MRI artificial intelligence-guided cognitive fusion-targeted biopsy versus routine cognitive fusion-targeted prostate biopsy in prostate cancer diagnosis: a randomized controlled trial.

BMC medicine
BACKGROUND: Cognitive fusion MRI-guided targeted biopsy (cTB) has been widely used in the diagnosis of prostate cancer (PCa). However, cTB relies heavily on the operator's experience and confidence in MRI readings. Our objective was to compare the ca...

An integrated machine learning model enhances delayed graft function prediction in pediatric renal transplantation from deceased donors.

BMC medicine
BACKGROUND: Kidney transplantation is the optimal renal replacement therapy for children with end-stage renal disease; however, delayed graft function (DGF), a common post-operative complication, may negatively impact the long-term outcomes of both t...

Development and validation of machine-learning models of diet management for hyperphenylalaninemia: a multicenter retrospective study.

BMC medicine
BACKGROUND: Assessing dietary phenylalanine (Phe) tolerance is crucial for managing hyperphenylalaninemia (HPA) in children. However, traditionally, adjusting the diet requires significant time from clinicians and parents. This study aims to investig...

A deep learning model for differentiating paediatric intracranial germ cell tumour subtypes and predicting survival with MRI: a multicentre prospective study.

BMC medicine
BACKGROUND: The pretherapeutic differentiation of subtypes of primary intracranial germ cell tumours (iGCTs), including germinomas (GEs) and nongerminomatous germ cell tumours (NGGCTs), is essential for clinical practice because of distinct treatment...

Integrating machine learning and artificial intelligence in life-course epidemiology: pathways to innovative public health solutions.

BMC medicine
The integration of machine learning (ML) and artificial intelligence (AI) techniques in life-course epidemiology offers remarkable opportunities to advance our understanding of the complex interplay between biological, social, and environmental facto...

The clinical value of artificial intelligence in assisting junior radiologists in thyroid ultrasound: a multicenter prospective study from real clinical practice.

BMC medicine
BACKGROUND: This study is to propose a clinically applicable 2-echelon (2e) diagnostic criteria for the analysis of thyroid nodules such that low-risk nodules are screened off while only suspicious or indeterminate ones are further examined by histop...