AI Medical Compendium Journal:
BMC pediatrics

Showing 1 to 10 of 20 articles

AI for chronic pain in children: a powerful resource.

BMC pediatrics
Given the lack of scientific evidence, chronic pain represents an arduous challenge, especially in the pediatric field. In this complex scenario, artificial intelligence (AI) could support diagnosis, therapy, and research. However, the great potentia...

Using machine learning models based on cardiac magnetic resonance parameters to predict the prognostic in children with myocarditis.

BMC pediatrics
OBJECTIVE: To develop machine learning (ML) models incorporating explanatory cardiac magnetic resonance (CMR) parameters for predicting the prognosis of myocarditis in pediatric patients.

Similarity of immune-associated markers in COVID-19 and Kawasaki disease: analyses from bioinformatics and machine learning.

BMC pediatrics
BACKGROUND: Infection by the SARS-CoV-2 virus can cause coronavirus disease 2019 (COVID-19) and can also exacerbate the symptoms of Kawasaki disease (KD), an acute vasculitis that mostly affects children. This study used bioinformatics and machine le...

Prediction of significant congenital heart disease in infants and children using continuous wavelet transform and deep convolutional neural network with 12-lead electrocardiogram.

BMC pediatrics
BACKGROUND: Congenital heart disease (CHD) affects approximately 1% of newborns and is a leading cause of mortality in early childhood. Despite the importance of early detection, current screening methods, such as pulse oximetry and auscultation, hav...

Optimizing machine learning models for predicting anemia among under-five children in Ethiopia: insights from Ethiopian demographic and health survey data.

BMC pediatrics
BACKGROUND: Healthcare practitioners require a robust predictive system to accurately diagnose diseases, especially in young children with conditions such as anemia. Delays in diagnosis and treatment can have severe consequences, potentially leading ...

Machine learning in lymphocyte and immune biomarker analysis for childhood thyroid diseases in China.

BMC pediatrics
OBJECTIVE: This study aims to characterize and analyze the expression of representative biomarkers like lymphocytes and immune subsets in children with thyroid disorders. It also intends to develop and evaluate a machine learning model to predict if ...

Hand X-rays findings and a disease screening for Turner syndrome through deep learning model.

BMC pediatrics
BACKGROUND: Turner syndrome (TS) is one of the important causes of short stature in girls, but there are cases of misdiagnosis and missed diagnosis in clinical practice. Our aim is to analyze the hand skeletal characteristics of TS patients and estab...

Continuous non-contact monitoring of neonatal activity.

BMC pediatrics
PURPOSE: Neonatal activity is an important physiological parameter in the neonatal intensive care unit (NICU). The degree of neonatal activity is associated with under and over-sedation and may also indicate the onset of disease. Activity may also ca...

Development of a simplified model and nomogram for the prediction of pulmonary hemorrhage in respiratory distress syndrome in extremely preterm infants.

BMC pediatrics
BACKGROUND: Pulmonary hemorrhage (PH) in respiratory distress syndrome (RDS) in extremely preterm infants exhibits a high mortality rate and poor long-term outcomes. The aim of the present study was to develop a machine learning (ML) predictive model...

Image-based deep learning in diagnosing mycoplasma pneumonia on pediatric chest X-rays.

BMC pediatrics
BACKGROUND: Correctly diagnosing and accurately distinguishing mycoplasma pneumonia in children has consistently posed a challenge in clinical practice, as it can directly impact the prognosis of affected children. To address this issue, we analyzed ...