AI Medical Compendium Journal:
Genetic epidemiology

Showing 1 to 10 of 12 articles

Enhancing Gene Expression Predictions Using Deep Learning and Functional Annotations.

Genetic epidemiology
Transcriptome-wide association studies (TWAS) aim to uncover genotype-phenotype relationships through a two-stage procedure: predicting gene expression from genotypes using an expression quantitative trait locus (eQTL) data set, then testing the pred...

Gene-environment interaction analysis via deep learning.

Genetic epidemiology
Gene-environment (G-E) interaction analysis plays an important role in studying complex diseases. Extensive methodological research has been conducted on G-E interaction analysis, and the existing methods are mostly based on regression techniques. In...

Deep learning identified genetic variants for COVID-19-related mortality among 28,097 affected cases in UK Biobank.

Genetic epidemiology
Analysis of host genetic components provides insights into the susceptibility and response to viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). To reveal genetic de...

The Translational Machine: A novel machine-learning approach to illuminate complex genetic architectures.

Genetic epidemiology
The Translational Machine (TM) is a machine learning (ML)-based analytic pipeline that translates genotypic/variant call data into biologically contextualized features that richly characterize complex variant architectures and permit greater interpre...

Exploring gene-gene interaction in family-based data with an unsupervised machine learning method: EPISFA.

Genetic epidemiology
Gene-gene interaction (G × G) is thought to fill the gap between the estimated heritability of complex diseases and the limited genetic proportion explained by identified single-nucleotide polymorphisms. The current tools for exploring G × G were oft...

Chances and challenges of machine learning-based disease classification in genetic association studies illustrated on age-related macular degeneration.

Genetic epidemiology
Imaging technology and machine learning algorithms for disease classification set the stage for high-throughput phenotyping and promising new avenues for genome-wide association studies (GWAS). Despite emerging algorithms, there has been no successfu...

An enhanced machine learning tool for cis-eQTL mapping with regularization and confounder adjustments.

Genetic epidemiology
Many expression quantitative trait loci (eQTL) studies have been conducted to investigate the biological effects of variants in gene regulation. However, these eQTL studies may suffer from low or moderate statistical power and overly conservative fal...

PANDA: Prioritization of autism-genes using network-based deep-learning approach.

Genetic epidemiology
Understanding the genetic background of complex diseases and disorders plays an essential role in the promising precision medicine. The evaluation of candidate genes, however, requires time-consuming and expensive experiments given a large number of ...

Polygenic risk scores outperform machine learning methods in predicting coronary artery disease status.

Genetic epidemiology
Coronary artery disease (CAD) is the leading global cause of mortality and has substantial heritability with a polygenic architecture. Recent approaches of risk prediction were based on polygenic risk scores (PRS) not taking possible nonlinear effect...

Application of deep convolutional neural networks in classification of protein subcellular localization with microscopy images.

Genetic epidemiology
Single-cell microscopy image analysis has proved invaluable in protein subcellular localization for inferring gene/protein function. Fluorescent-tagged proteins across cellular compartments are tracked and imaged in response to genetic or environment...