AI Medical Compendium Journal:
Radiography (London, England : 1995)

Showing 1 to 10 of 53 articles

Potential of artificial intelligence for radiation dose reduction in computed tomography -A scoping review.

Radiography (London, England : 1995)
INTRODUCTION: Artificial intelligence (AI) is now transforming medical imaging, with extensive ramifications for nearly every aspect of diagnostic imaging, including computed tomography (CT). This current work aims to review, evaluate, and summarise ...

Integrating AI into medical imaging curricula: Insights from UK HEIs.

Radiography (London, England : 1995)
INTRODUCTION: With artificial intelligence (AI) becoming increasingly integrated into medical imaging, the Health and Care Professions Council (HCPC) updated its Standards of Proficiency for Radiographers in Autumn 2023. These changes require clinici...

Reduction of radiation exposure in chest radiography using deep learning-based noise reduction processing: A phantom and retrospective clinical study.

Radiography (London, England : 1995)
INTRODUCTION: Intelligent noise reduction (INR), a deep learning-based noise reduction developed by Canon, is used in planar radiography to improve image quality and reduce patient exposure dose. This study aimed to evaluate the reduction of patient ...

The role of patient outcomes in shaping moral responsibility in AI-supported decision making.

Radiography (London, England : 1995)
INTRODUCTION: Integrating decision support mechanisms utilising artificial intelligence (AI) into medical radiation practice introduces unique challenges to accountability for patient care outcomes. AI systems, often seen as "black boxes," can obscur...

Principles for enhancing trust in artificial intelligence systems among medical imaging professionals in Ghana: A nationwide cross-sectional study.

Radiography (London, England : 1995)
INTRODUCTION: To realise the full potential of artificial intelligence (AI) systems in medical imaging, it is crucial to address challenges, such as cyberterrorism to foster trust and acceptance. This study aimed to determine the principles that enha...

Preliminary phantom study of four-dimensional computed tomographic angiography for renal artery mapping: Low-tube voltage and low-contrast volume imaging with deep learning-based reconstruction.

Radiography (London, England : 1995)
INTRODUCTION: A hybrid angio-CT system with 320-row detectors and deep learning-based reconstruction (DLR), provides additional imaging via 4D-CT angiography (CTA), potentially shortening procedure time and reducing DSA acquisitions, contrast media, ...

Assessment of breast composition in MRI using artificial intelligence - A systematic review.

Radiography (London, England : 1995)
INTRODUCTION: Magnetic Resonance Imaging (MRI) performs a critical role in breast cancer diagnosis, especially for high-risk populations e.g. family history. MRI could take advantage of the implementation of artificial intelligence (AI). AI assessmen...

The potential use of deep learning in performing autocorrection of setup errors in patients receiving radiotherapy.

Radiography (London, England : 1995)
INTRODUCTION: Modern radiotherapy practice relies on multiple approaches for verification of patient positioning. All of these techniques require experienced radiotherapists who understand the anatomical landmarks and the limitations of the used veri...

The use of artificial intelligence to aid the diagnosis of lung cancer - A retrospective-cohort study.

Radiography (London, England : 1995)
INTRODUCTION: AI software in the form of deep learning-based automatic detection (DLAD) algorithms for chest X-ray (CXR) interpretation have shown success in early detection of lung cancer (LC), however, there remains uncertainty related to clinical ...

Breath-hold diffusion-weighted MR imaging (DWI) using deep learning reconstruction: Comparison with navigator triggered DWI in patients with malignant liver tumors.

Radiography (London, England : 1995)
INTRODUCTION: This study investigated the feasibility of single breath-hold (BH) diffusion-weighted MR imaging (DWI) using deep learning reconstruction (DLR) compared to navigator triggered (NT) DWI in patients with malignant liver tumors.