To validate the clinical feasibility of deep learning-driven magnetic resonance angiography (DL-driven MRA) collateral map in acute ischemic stroke. We employed a 3D multitask regression and ordinal regression deep neural network, called as 3D-MROD-N...
This study investigates the use of machine learning models to predict solubility of rivaroxaban in binary solvents based on temperature (T), mass fraction (w), and solvent type. Using a dataset with over 250 data points and including solvents encoded...
Recent advances highlight the limitations of classification strategies in machine learning that rely on a single data source for understanding, diagnosing and predicting psychiatric syndromes. Moreover, approaches based solely on clinician labels oft...
Drug discovery and development is a challenging and time-consuming process. Laboratory experiments conducted on Vidarabine showed IC 6.97 µg∕mL, 25.78 µg∕mL, and ˃ 100 µg∕mL against non-small Lung cancer (A-549), Human Melanoma (A-375), and Human epi...
Data scarcity in medical images makes transfer learning a common approach in computer-aided diagnosis. Some disease classification tasks can rely on large homogeneous public datasets to train the transferred model, while others cannot, i.e., endoscop...
We aimed to develop and evaluate Explainable Artificial Intelligence (XAI) for fetal ultrasound using actionable concepts as feedback to end-users, using a prospective cross-center, multi-level approach. We developed, implemented, and tested a deep-l...
Diagnosing Alzheimer's disease (AD) through pathological markers is typically costly and invasive. This study aims to find a noninvasive, cost-effective method using portable electroencephalography (EEG) to detect changes in AD-related biomarkers in ...
This study sought to establish and validate an interpretable CT radiomics-based machine learning model capable of predicting post-acute pancreatitis diabetes mellitus (PPDM-A), providing clinicians with an effective predictive tool to aid patient man...
Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method,...
Prenatal sonographic diagnosis of congenital heart disease (CHD) can lead to improved morbidity and mortality. However, the diagnostic accuracy of ultrasound, the sole prenatal screening tool, remains limited. Failed prenatal or early newborn detecti...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.