AIMC Journal:
Scientific reports

Showing 661 to 670 of 5345 articles

A novel deep sequential learning architecture for drug drug interaction prediction using DDINet.

Scientific reports
Drug drug Interactions (DDI) present considerable challenges in healthcare, often resulting in adverse effects or decreased therapeutic efficacy. This article proposes a novel deep sequential learning architecture called DDINet to predict and classif...

Innovative hand pose based sign language recognition using hybrid metaheuristic optimization algorithms with deep learning model for hearing impaired persons.

Scientific reports
Sign language (SL) is an effective mode of communication, which uses visual-physical methods like hand signals, expressions, and body actions to communicate between the difficulty of hearing and the deaf community, produce opinions, and carry signifi...

Life's Crucial 9 and NAFLD from association to SHAP-interpreted machine learning predictions.

Scientific reports
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. Cardiovascular disease (CVD) and NAFLD share multiple common risk factors. Life's Crucial 9 (LC9), a novel indicator for comprehensive assessment of card...

Construction of a machine learning-based interpretable prediction model for acute kidney injury in hospitalized patients.

Scientific reports
In this observational study, we used data from 59,936 hospitalized adults to construct a model. For the models constructed with all 53 variables, all five models achieved acceptable performance with the validation cohort, with the extreme gradient bo...

Stages prediction of Alzheimer's disease with shallow 2D and 3D CNNs from intelligently selected neuroimaging data.

Scientific reports
Detection of Alzheimer's Disease (AD) is critical for successful diagnosis and treatment, involving the common practice of screening for Mild Cognitive Impairment (MCI). However, the progressive nature of AD makes it challenging to identify its causa...

Machine learning predicts spinal cord stimulation surgery outcomes and reveals novel neural markers for chronic pain.

Scientific reports
Spinal cord stimulation (SCS) is a well-accepted therapy for refractory chronic pain. However, predicting responders remain a challenge due to a lack of objective pain biomarkers. The present study applies machine learning to predict which patients w...

Identifying novel risk factors for aneurysmal subarachnoid haemorrhage using machine learning.

Scientific reports
Aneurysmal subarachnoid haemorrhage (aSAH) is a type of stroke with high mortality and morbidity. This study aimed to identify novel aSAH risk factors by combining machine learning (ML) and traditional statistical methods. Using the UK Biobank, we id...

A Two stage deep learning network for automated femoral segmentation in bilateral lower limb CT scans.

Scientific reports
This study presents the development of a deep learning-based two-stage network designed for the efficient and precise segmentation of the femur in full lower limb CT images. The proposed network incorporates a dual-phase approach: rapid delineation o...

Establishment and validation of a ResNet-based radiomics model for predicting prognosis in cervical spinal cord injury patients.

Scientific reports
Cervical spinal cord injury (cSCI) poses a significant challenge due to the unpredictable nature of recovery, which ranges from mild paralysis to severe long-term disability. Accurate prognostic models are crucial for guiding treatment and rehabilita...

The role of generative AI tools in shaping mechanical engineering education from an undergraduate perspective.

Scientific reports
This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions sp...