AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Adenoma

Showing 11 to 20 of 124 articles

Clear Filters

A clinical practical model for preoperative prediction of visual outcome for pituitary adenoma patients in a retrospective and prospective study.

Frontiers in endocrinology
OBJECTIVE: Preoperative prediction of visual recovery after pituitary adenoma resection surgery remains challenging. This study aimed to investigate the value of clinical and radiological features in preoperatively predicting visual outcomes after su...

Predictive modeling of arginine vasopressin deficiency after transsphenoidal pituitary adenoma resection by using multiple machine learning algorithms.

Scientific reports
This study aimed to predict arginine vasopressin deficiency (AVP-D) following transsphenoidal pituitary adenoma surgery using machine learning algorithms. We reviewed 452 cases from December 2013 to December 2023, analyzing clinical and imaging data....

Effectiveness of artificial intelligence assisted colonoscopy on adenoma and polyp miss rate: A meta-analysis of tandem RCTs.

Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver
BACKGROUND AND AIMS: One-fourth of colorectal neoplasia is missed at screening colonoscopy, representing the leading cause of interval colorectal cancer (I-CRC). This systematic review and meta-analysis summarizes the efficacy of computer-aided colon...

Effect of a novel artificial intelligence-based cecum recognition system on adenoma detection metrics in a screening colonoscopy setting.

Gastrointestinal endoscopy
BACKGROUND AND AIMS: Cecal intubation in colonoscopy relies on self-reporting. We developed an artificial intelligence-based cecum recognition system (AI-CRS) for post-hoc verification of cecal intubation and explored its impact on adenoma metrics.

Development and validation of the Open-Source Automatic Bowel Preparation Scale.

Gastrointestinal endoscopy
BACKGROUND AND AIMS: Insufficient bowel preparation accounts for up to 42% of missed adenomas in colonoscopy. However, major analysis programs found no correlation between adenoma detection rate and the human-rated Boston Bowel Preparation Scale (BBP...

In vivo evaluation of complex polyps with endoscopic optical coherence tomography and deep learning during routine colonoscopy: a feasibility study.

Scientific reports
Standard-of-care (SoC) imaging for assessing colorectal polyps during colonoscopy, based on white-light colonoscopy (WLC) and narrow-band imaging (NBI), does not have sufficient accuracy to assess the invasion depth of complex polyps non-invasively d...

[Effect of an artificial intelligence-assisted recognition system on colonoscopy quality].

Zhonghua nei ke za zhi
To explore the value of the artificial intelligence (AI)-assisted recognition system in the detection quality of colonoscopy. From January 2023, the data on 700 patients who underwent colonoscopy in the Digestive Endoscopy Center of the First Affil...

[Telemedicine and AI-supported diagnostics in the daily routine of visceral medicine].

Chirurgie (Heidelberg, Germany)
Advances in telemedicine, exemplified by augmented reality (AR) and virtual reality (VR), are rapidly progressing. For instance, AR available over long distances has already been successfully utilized in crisis intervention, such as in war zones. The...

Current Status of Artificial Intelligence Use in Colonoscopy.

Digestion
BACKGROUND: Artificial intelligence (AI) has significantly impacted medical imaging, particularly in gastrointestinal endoscopy. Computer-aided detection and diagnosis systems (CADe and CADx) are thought to enhance the quality of colonoscopy procedur...