AIMC Topic: Aged

Clear Filters Showing 171 to 180 of 12403 articles

Extremity Soft Tissue Sarcoma Reconstruction Nomograms: A Clinicoradiomic, Machine Learning-Powered Predictor of Postoperative Outcomes.

JCO clinical cancer informatics
PURPOSE: The choice of wound closure modality after limb-sparing extremity soft-tissue sarcoma (eSTS) resection is fraught with uncertainty. Leveraging machine learning and clinicoradiomic data, we developed Sarcoma Reconstruction Nomograms (SARCON),...

An ensemble-based 3D residual network for the classification of Alzheimer's disease.

PloS one
Alzheimer's disease (AD) is a common type of dementia, with mild cognitive impairment (MCI) being a key precursor. Early MCI diagnosis is crucial for slowing AD progression, but distinguishing MCI from normal controls (NC) is challenging due to subtl...

Artificial intelligence-assisted diagnosis and prognostication in low ejection fraction using electrocardiograms in inpatient department: a pragmatic randomized controlled trial.

BMC medicine
BACKGROUND: Early diagnosis of low ejection fraction (EF) remains challenging despite being a treatable condition. This study aimed to evaluate the effectiveness of an electrocardiogram (ECG)-based artificial intelligence (AI)-assisted clinical decis...

Investigating methods to enhance interpretability and performance in cardiac MRI for myocardial scarring diagnosis using convolutional neural network classification and One Match.

PloS one
Machine learning (ML) classification of myocardial scarring in cardiac MRI is often hindered by limited explainability, particularly with convolutional neural networks (CNNs). To address this, we developed One Match (OM), an algorithm that builds on ...

Comparison of lesion segmentation performance in diffusion-weighted imaging and apparent diffusion coefficient images of stroke by artificial neural networks.

PloS one
Stroke is the second leading cause of death, accounting for 11% of deaths worldwide. Comparing diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) images is important for stroke diagnosis, but most studies have focused on lesion...

How mental health status and attitudes toward mental health shape AI Acceptance in psychosocial care: a cross-sectional analysis.

BMC psychology
INTRODUCTION: Artificial Intelligence (AI) has become part of our everyday lives and is also increasingly applied in psychosocial healthcare as it can enhance it, make it more accessible, and reduce barriers for help seeking. User behaviour and readi...

Predicting rapid kidney function decline in middle-aged and elderly Chinese adults using machine learning techniques.

BMC medical informatics and decision making
The rapid decline of kidney function in middle-aged and elderly people has become an increasingly serious public health problem. Machine learning (ML) technology has substantial potential to disease prediction. The present study use dataset from the ...

Histopathologic deep learning model for predicting tumor response to hepatic arterial infusion chemotherapy plus TKIs and ICIs in large hepatocellular carcinoma.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: While triplet therapy (HTI), which combines hepatic arterial infusion chemotherapy (HAIC) with tyrosine kinase inhibitors and immune checkpoint inhibitors, is widely used in the treatment of large hepatocellular carcinoma (HCC), there are...

Machine learning method based on radiomics help differentiate posterior pituitary tumors from pituitary neuroendocrine tumors and craniopharyngioma.

Scientific reports
Posterior pituitary tumors (PPTs) are rare neoplasms, but easily misdiagnosed as pituitary neuroendocrine tumor (PitNET) and craniopharyngioma. This study aimed to differentiate PPTs from PitNET and craniopharyngioma using a machine learning method b...

The value of intratumoral and peritumoral ultrasound radiomics model constructed using multiple machine learning algorithms for non-mass breast cancer.

Scientific reports
To investigate the diagnostic capability of multiple machine learning algorithms combined with intratumoral and peritumoral ultrasound radiomics models for non-massive breast cancer in dense breast backgrounds. Manual segmentation of ultrasound image...