AIMC Topic: Amyloid

Clear Filters Showing 21 to 30 of 44 articles

The Budapest Amyloid Predictor and Its Applications.

Biomolecules
The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-she...

Translating amyloid PET of different radiotracers by a deep generative model for interchangeability.

NeuroImage
It is challenging to compare amyloid PET images obtained with different radiotracers. Here, we introduce a new approach to improve the interchangeability of amyloid PET acquired with different radiotracers through image-level translation. Deep genera...

Modeling autosomal dominant Alzheimer's disease with machine learning.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Machine learning models were used to discover novel disease trajectories for autosomal dominant Alzheimer's disease.

Improved amyloid burden quantification with nonspecific estimates using deep learning.

European journal of nuclear medicine and molecular imaging
PURPOSE: Standardized uptake value ratio (SUVr) used to quantify amyloid-β burden from amyloid-PET scans can be biased by variations in the tracer's nonspecific (NS) binding caused by the presence of cerebrovascular disease (CeVD). In this work, we p...

Visual interpretation of [F]Florbetaben PET supported by deep learning-based estimation of amyloid burden.

European journal of nuclear medicine and molecular imaging
PURPOSE: Amyloid PET which has been widely used for noninvasive assessment of cortical amyloid burden is visually interpreted in the clinical setting. As a fast and easy-to-use visual interpretation support system, we analyze whether the deep learnin...

Generalization of deep learning models for ultra-low-count amyloid PET/MRI using transfer learning.

European journal of nuclear medicine and molecular imaging
PURPOSE: We aimed to evaluate the performance of deep learning-based generalization of ultra-low-count amyloid PET/MRI enhancement when applied to studies acquired with different scanning hardware and protocols.

Automatic identification of crossovers in cryo-EM images of murine amyloid protein A fibrils with machine learning.

Journal of microscopy
Detecting crossovers in cryo-electron microscopy images of protein fibrils is an important step towards determining the morphological composition of a sample. Currently, the crossover locations are picked by hand, which introduces errors and is a tim...

The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases.

European journal of nuclear medicine and molecular imaging
PURPOSE: Although most deep learning (DL) studies have reported excellent classification accuracy, these studies usually target typical Alzheimer's disease (AD) and normal cognition (NC) for which conventional visual assessment performs well. A clini...

The Classifying Autoencoder: Gaining Insight into Amyloid Assembly of Peptides and Proteins.

The journal of physical chemistry. B
Despite the importance of amyloid formation in disease pathology, the understanding of the primary structure?activity relationship for amyloid-forming peptides remains elusive. Here we use a new neural-network based method of analysis: the classifyin...

Fluorescent silicon nanoparticles inhibit the amyloid fibrillation of insulin.

Journal of materials chemistry. B
Amyloid fibrillation of proteins is likely a key factor leading to the development of amyloidosis-associated diseases. Inhibiting amyloid fibrillation has become a crucial therapeutic strategy. Water-soluble, fluorescent silicon nanoparticles (SiNPs)...