AIMC Topic: Arabidopsis

Clear Filters Showing 21 to 30 of 94 articles

A novel deep learning-based 3D cell segmentation framework for future image-based disease detection.

Scientific reports
Cell segmentation plays a crucial role in understanding, diagnosing, and treating diseases. Despite the recent success of deep learning-based cell segmentation methods, it remains challenging to accurately segment densely packed cells in 3D cell memb...

A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana.

BMC plant biology
BACKGROUND: Proteins are the workforce of the cell and their phosphorylation status tailors specific responses efficiently. One of the main challenges of phosphoproteomic approaches is to deconvolute biological processes that specifically respond to ...

Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships.

Nature communications
Inferring phenotypic outcomes from genomic features is both a promise and challenge for systems biology. Using gene expression data to predict phenotypic outcomes, and functionally validating the genes with predictive powers are two challenges we add...

A novel lncRNA-protein interaction prediction method based on deep forest with cascade forest structure.

Scientific reports
Long noncoding RNAs (lncRNAs) regulate many biological processes by interacting with corresponding RNA-binding proteins. The identification of lncRNA-protein Interactions (LPIs) is significantly important to well characterize the biological functions...

Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses.

The Plant journal : for cell and molecular biology
Brassinosteroids (BRs) are a group of plant steroid hormones involved in regulating growth, development, and stress responses. Many components of the BR pathway have previously been identified and characterized. However, BR phenotyping experiments ar...

Deep6mA: A deep learning framework for exploring similar patterns in DNA N6-methyladenine sites across different species.

PLoS computational biology
N6-methyladenine (6mA) is an important DNA modification form associated with a wide range of biological processes. Identifying accurately 6mA sites on a genomic scale is crucial for under-standing of 6mA's biological functions. However, the existing ...

Computational identification of ubiquitination sites in Arabidopsis thaliana using convolutional neural networks.

Plant molecular biology
We developed two CNNs for predicting ubiquitination sites in Arabidopsis thaliana, demonstrated their competitive performance, analyzed amino acid physicochemical properties and the CNN structures, and predicted ubiquitination sites in Arabidopsis. A...

m5CPred-SVM: a novel method for predicting m5C sites of RNA.

BMC bioinformatics
BACKGROUND: As one of the most common post-transcriptional modifications (PTCM) in RNA, 5-cytosine-methylation plays important roles in many biological functions such as RNA metabolism and cell fate decision. Through accurate identification of 5-meth...

Accurate prediction of DNA N-methylcytosine sites via boost-learning various types of sequence features.

BMC genomics
BACKGROUND: DNA N4-methylcytosine (4mC) is a critical epigenetic modification and has various roles in the restriction-modification system. Due to the high cost of experimental laboratory detection, computational methods using sequence characteristic...