AIMC Topic: Bacterial Proteins

Clear Filters Showing 31 to 40 of 176 articles

Modelling protein complexes with crosslinking mass spectrometry and deep learning.

Nature communications
Scarcity of structural and evolutionary information on protein complexes poses a challenge to deep learning-based structure modelling. We integrate experimental distance restraints obtained by crosslinking mass spectrometry (MS) into AlphaFold-Multim...

DeepPhoPred: Accurate Deep Learning Model to Predict Microbial Phosphorylation.

Proteins
Phosphorylation is a substantial posttranslational modification of proteins that refers to adding a phosphate group to the amino acid side chain after translation process in the ribosome. It is vital to coordinate cellular functions, such as regulati...

Characterizing Secretion System Effector Proteins With Structure-Aware Graph Neural Networks and Pre-Trained Language Models.

IEEE journal of biomedical and health informatics
The Type III Secretion Systems (T3SSs) play a pivotal role in host-pathogen interactions by mediating the secretion of type III secretion system effectors (T3SEs) into host cells. These T3SEs mimic host cell protein functions, influencing interaction...

Classification of subspecies based on MALDI-TOF MS protein profiles using machine learning models.

Microbiology spectrum
UNLABELLED: is an important bacterial species used as a starter culture for fermented foods; however, two subspecies within this species exhibit different properties in the foods. Matrix-assisted laser desorption/ionization-time of flight mass spect...

Integrated structural proteomics and machine learning-guided mapping of a highly protective precision vaccine against mycoplasma pulmonis.

International immunopharmacology
Mycoplasma pulmonis (M. pulmonis) is an emerging respiratory infection commonly linked to prostate cancer, and it is classified under the group of mycoplasmas. Improved management of mycoplasma infections is essential due to the frequent ineffectiven...

Identification of key drivers of antimicrobial resistance in using machine learning.

Canadian journal of microbiology
With antimicrobial resistance (AMR) rapidly evolving in pathogens, quick and accurate identification of genetic determinants of phenotypic resistance is essential for improving surveillance, stewardship, and clinical mitigation. Machine learning (ML)...

Neural network extrapolation to distant regions of the protein fitness landscape.

Nature communications
Machine learning (ML) has transformed protein engineering by constructing models of the underlying sequence-function landscape to accelerate the discovery of new biomolecules. ML-guided protein design requires models, trained on local sequence-functi...

Identification of novel toxins associated with the extracellular contractile injection system using machine learning.

Molecular systems biology
Secretion systems play a crucial role in microbe-microbe or host-microbe interactions. Among these systems, the extracellular contractile injection system (eCIS) is a unique bacterial and archaeal extracellular secretion system that injects protein t...