AIMC Topic: Bacterial Proteins

Clear Filters Showing 31 to 40 of 168 articles

Identification of key drivers of antimicrobial resistance in using machine learning.

Canadian journal of microbiology
With antimicrobial resistance (AMR) rapidly evolving in pathogens, quick and accurate identification of genetic determinants of phenotypic resistance is essential for improving surveillance, stewardship, and clinical mitigation. Machine learning (ML)...

Neural network extrapolation to distant regions of the protein fitness landscape.

Nature communications
Machine learning (ML) has transformed protein engineering by constructing models of the underlying sequence-function landscape to accelerate the discovery of new biomolecules. ML-guided protein design requires models, trained on local sequence-functi...

Identification of novel toxins associated with the extracellular contractile injection system using machine learning.

Molecular systems biology
Secretion systems play a crucial role in microbe-microbe or host-microbe interactions. Among these systems, the extracellular contractile injection system (eCIS) is a unique bacterial and archaeal extracellular secretion system that injects protein t...

In silico method and bioactivity evaluation to discover novel antimicrobial agents targeting FtsZ protein: Machine learning, virtual screening and antibacterial mechanism study.

Naunyn-Schmiedeberg's archives of pharmacology
This research paper utilizes a fused-in-silico approach alongside bioactivity evaluation to identify active FtsZ inhibitors for drug discovery. Initially, ROC-guided machine learning was employed to obtain almost 13182 compounds from three libraries....

Machine learning-based classification reveals distinct clusters of non-coding genomic allelic variations associated with Erm-mediated antibiotic resistance.

mSystems
UNLABELLED: The erythromycin resistance RNA methyltransferase () confers cross-resistance to all therapeutically important macrolides, lincosamides, and streptogramins (MLS phenotype). The expression of is often induced by the macrolide-mediated rib...

Rapid, portable, and sensitive detection of CaMV35S by RPA-CRISPR/Cas12a-G4 colorimetric assays with high accuracy deep learning object recognition and classification.

Talanta
Fast, sensitive, and portable detection of genetic modification contributes to agricultural security and food safety. Here, we developed RPA-CRISPR/Cas12a-G-quadruplex colorimetric assays that can combine with intelligent recognition by deep learning...

Protein function annotation and virulence factor identification of Klebsiella pneumoniae genome by multiple machine learning models.

Microbial pathogenesis
Klebsiella pneumoniae is a type of Gram-negative bacterium which can cause a range of infections in human. In recent years, an increasing number of strains of K. pneumoniae resistant to multiple antibiotics have emerged, posing a significant threat t...

Novel candidate genes for environmental stresses response in Synechocystis sp. PCC 6803 revealed by machine learning algorithms.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]
Cyanobacteria have developed acclimation strategies to adapt to harsh environments, making them a model organism. Understanding the molecular mechanisms of tolerance to abiotic stresses can help elucidate how cells change their gene expression patter...

KINNTREX: a neural network to unveil protein mechanisms from time-resolved X-ray crystallography.

IUCrJ
Here, a machine-learning method based on a kinetically informed neural network (NN) is introduced. The proposed method is designed to analyze a time series of difference electron-density maps from a time-resolved X-ray crystallographic experiment. Th...