AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Bacterial Proteins

Showing 31 to 40 of 158 articles

Clear Filters

Enhanced detection of Listeria monocytogenes using tetraethylenepentamine-functionalized magnetic nanoparticles and LAMP-CRISPR/Cas12a-based biosensor.

Analytica chimica acta
BACKGROUND: Listeria monocytogenes is a pathogenic bacterium that can lead to severe illnesses, especially among vulnerable populations. Therefore, the development of rapid and sensitive detection methods is vital to prevent and manage foodborne dise...

Highly accurate classification and discovery of microbial protein-coding gene functions using FunGeneTyper: an extensible deep learning framework.

Briefings in bioinformatics
High-throughput DNA sequencing technologies decode tremendous amounts of microbial protein-coding gene sequences. However, accurately assigning protein functions to novel gene sequences remain a challenge. To this end, we developed FunGeneTyper, an e...

Rapid, portable, and sensitive detection of CaMV35S by RPA-CRISPR/Cas12a-G4 colorimetric assays with high accuracy deep learning object recognition and classification.

Talanta
Fast, sensitive, and portable detection of genetic modification contributes to agricultural security and food safety. Here, we developed RPA-CRISPR/Cas12a-G-quadruplex colorimetric assays that can combine with intelligent recognition by deep learning...

Protein function annotation and virulence factor identification of Klebsiella pneumoniae genome by multiple machine learning models.

Microbial pathogenesis
Klebsiella pneumoniae is a type of Gram-negative bacterium which can cause a range of infections in human. In recent years, an increasing number of strains of K. pneumoniae resistant to multiple antibiotics have emerged, posing a significant threat t...

ProkDBP: Toward more precise identification of prokaryotic DNA binding proteins.

Protein science : a publication of the Protein Society
Prokaryotic DNA binding proteins (DBPs) play pivotal roles in governing gene regulation, DNA replication, and various cellular functions. Accurate computational models for predicting prokaryotic DBPs hold immense promise in accelerating the discovery...

Identification of key drivers of antimicrobial resistance in using machine learning.

Canadian journal of microbiology
With antimicrobial resistance (AMR) rapidly evolving in pathogens, quick and accurate identification of genetic determinants of phenotypic resistance is essential for improving surveillance, stewardship, and clinical mitigation. Machine learning (ML)...

Identification of novel toxins associated with the extracellular contractile injection system using machine learning.

Molecular systems biology
Secretion systems play a crucial role in microbe-microbe or host-microbe interactions. Among these systems, the extracellular contractile injection system (eCIS) is a unique bacterial and archaeal extracellular secretion system that injects protein t...

In silico method and bioactivity evaluation to discover novel antimicrobial agents targeting FtsZ protein: Machine learning, virtual screening and antibacterial mechanism study.

Naunyn-Schmiedeberg's archives of pharmacology
This research paper utilizes a fused-in-silico approach alongside bioactivity evaluation to identify active FtsZ inhibitors for drug discovery. Initially, ROC-guided machine learning was employed to obtain almost 13182 compounds from three libraries....

Machine learning-based classification reveals distinct clusters of non-coding genomic allelic variations associated with Erm-mediated antibiotic resistance.

mSystems
UNLABELLED: The erythromycin resistance RNA methyltransferase () confers cross-resistance to all therapeutically important macrolides, lincosamides, and streptogramins (MLS phenotype). The expression of is often induced by the macrolide-mediated rib...

Characterizing Secretion System Effector Proteins With Structure-Aware Graph Neural Networks and Pre-Trained Language Models.

IEEE journal of biomedical and health informatics
The Type III Secretion Systems (T3SSs) play a pivotal role in host-pathogen interactions by mediating the secretion of type III secretion system effectors (T3SEs) into host cells. These T3SEs mimic host cell protein functions, influencing interaction...