AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biological Products

Showing 1 to 10 of 104 articles

Clear Filters

Identification of CXCR4 inhibitory activity in natural compounds using cheminformatics-guided machine learning algorithms.

Integrative biology : quantitative biosciences from nano to macro
Neurodegenerative disorders are characterised by progressive damage to neurons that leads to cognitive impairment and motor dysfunction. Current treatment options focus only on symptom management and palliative care, without addressing their root cau...

New solutions for antibiotic discovery: Prioritizing microbial biosynthetic space using ecology and machine learning.

PLoS biology
With the explosive increase in genome sequence data, perhaps the major challenge in natural-product-based drug discovery is the identification of gene clusters most likely to specify new chemistry and bioactivities. We discuss the challenges and stat...

Accurate Prediction of ωB97X-D/6-31G* Equilibrium Geometries from a Neural Net Starting from Merck Molecular Force Field (MMFF) Molecular Mechanics Geometries.

Journal of chemical information and modeling
Starting from Merck Molecular Force Field (MMFF) geometries, a neural-net based model has been formulated to closely reproduce ωB97X-D/6-31G* equilibrium geometries for organic molecules. The model involves training to >6 million energy and force cal...

Machine Learning-Based Bioactivity Classification of Natural Products Using LC-MS/MS Metabolomics.

Journal of natural products
The rediscovery of known drug classes represents a major challenge in natural products drug discovery. Compound rediscovery inhibits the ability of researchers to explore novel natural products and wastes significant amounts of time and resources. Th...

Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future Perspectives.

Journal of medicinal chemistry
Drug discovery, a multifaceted process from compound identification to regulatory approval, historically plagued by inefficiencies and time lags due to limited data utilization, now faces urgent demands for accelerated lead compound identification. I...

Engineering the future of medicine: Natural products, synthetic biology and artificial intelligence for next-generation therapeutics.

Clinical and translational medicine
The eXchange Unit between Thiolation domains approach and artificial intelligence (AI)-driven tools like Synthetic Intelligence are transforming nonribosomal peptide synthetase and polyketide synthase engineering, enabling the creation of novel bioac...

Personalized prediction of psoriasis relapse post-biologic discontinuation: a machine learning-driven population cohort study.

The Journal of dermatological treatment
BACKGROUND: Identifying the risk of psoriasis relapse after discontinuing biologics can help optimize treatment strategies, potentially reducing relapse rates and alleviating the burden of disease management.

Multitarget Natural Compounds for Ischemic Stroke Treatment: Integration of Deep Learning Prediction and Experimental Validation.

Journal of chemical information and modeling
Ischemic stroke's complex pathophysiology demands therapeutic approaches targeting multiple pathways simultaneously, yet current treatments remain limited. We developed an innovative drug discovery pipeline combining a deep learning approach with exp...

Bidirectional Long Short-Term Memory (BiLSTM) Neural Networks with Conjoint Fingerprints: Application in Predicting Skin-Sensitizing Agents in Natural Compounds.

Journal of chemical information and modeling
Skin sensitization, or allergic contact dermatitis, represents a critical end point in toxicity assessment, with profound implications for drug safety and regulatory decision-making. This study aims to develop a robust deep-learning-based quantitativ...

Computational screening of natural products as tryptophan 2,3-dioxygenase inhibitors: Insights from CNN-based QSAR, molecular docking, ADMET, and molecular dynamics simulations.

Computers in biology and medicine
Parkinson's disease (PD) is characterised by a complex array of motor, psychiatric, and gastrointestinal symptoms, many of which are linked to disruptions in neuroactive metabolites. Dysregulated activity of tryptophan 2,3-dioxygenase (TDO), a key en...