AIMC Topic: Remission Induction

Clear Filters Showing 1 to 10 of 41 articles

Predicting treatment response in individuals with major depressive disorder using structural MRI-based similarity features.

BMC psychiatry
BACKGROUND: Major Depressive Disorder (MDD) is a prevalent mental health condition with significant societal impact. Structural magnetic resonance imaging (sMRI) and machine learning have shown promise in psychiatry, offering insights into brain abno...

Prediction of remission of pharmacologically treated psychotic depression: A machine learning approach.

Journal of affective disorders
BACKGROUND: The combination of antidepressant and antipsychotic medication is an effective treatment for major depressive disorder with psychotic features ('psychotic depression'). The present study aims to identify sociodemographic and clinical pred...

Personalized prediction of psoriasis relapse post-biologic discontinuation: a machine learning-driven population cohort study.

The Journal of dermatological treatment
BACKGROUND: Identifying the risk of psoriasis relapse after discontinuing biologics can help optimize treatment strategies, potentially reducing relapse rates and alleviating the burden of disease management.

Federated Learning for Predicting Postoperative Remission of Patients with Acromegaly: A Multicentered Study.

World neurosurgery
BACKGROUND: Decentralized federated learning (DFL) may serve as a useful framework for machine learning (ML) tasks in multicentered studies, maximizing the use of clinical data without data sharing. We aim to propose the first workflow of DFL for ML ...

Optimizing the Prediction of Depression Remission: A Longitudinal Machine Learning Approach.

American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics
Decisions about when to change antidepressant treatment are complex and benefit from accurate prediction of treatment outcome. Prognostic accuracy can be enhanced by incorporating repeated assessments of symptom severity collected during treatment. P...

Predicting remission after acute phase pharmacotherapy in patients with bipolar I depression: A machine learning approach with cross-trial and cross-drug replication.

Bipolar disorders
OBJECTIVES: Interpatient variability in bipolar I depression (BP-D) symptoms challenges the ability to predict pharmacotherapeutic outcomes. A machine learning workflow was developed to predict remission after 8 weeks of pharmacotherapy (total score ...

Artificial intelligence-assisted colonoscopy to identify histologic remission and predict the outcomes of patients with ulcerative colitis: A systematic review.

Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver
This systematic review evaluated the current status of AI-assisted colonoscopy to identify histologic remission and predict the clinical outcomes of patients with ulcerative colitis. The use of artificial intelligence (AI) has increased substantially...

Optimizing precision medicine for second-step depression treatment: a machine learning approach.

Psychological medicine
BACKGROUND: Less than a third of patients with depression achieve successful remission with standard first-step antidepressant monotherapy. The process for determining appropriate second-step care is often based on clinical intuition and involves a p...