AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Brain Neoplasms

Showing 111 to 120 of 1008 articles

Clear Filters

Ensemble learning-based radiomics model for discriminating brain metastasis from glioblastoma.

European journal of radiology
OBJECTIVE: Differentiating between brain metastasis (BM) and glioblastoma (GBM) preoperatively is challenging due to their similar imaging features on conventional brain MRI. This study aimed to enhance diagnostic accuracy through a machine learning ...

Performance of recurrent neural networks with Monte Carlo dropout for predicting pharmacokinetic parameters from dynamic contrast-enhanced magnetic resonance imaging data.

Journal of applied clinical medical physics
PURPOSE: To quantitatively evaluate the performance of two types of recurrent neural networks (RNNs), long short-term memory (LSTM) and gated recurrent units (GRU), using Monte Carlo dropout (MCD) to predict pharmacokinetic (PK) parameters from dynam...

Assessment of MGMT promoter methylation status in glioblastoma using deep learning features from multi-sequence MRI of intratumoral and peritumoral regions.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: This study aims to evaluate the effectiveness of deep learning features derived from multi-sequence magnetic resonance imaging (MRI) in determining the O-methylguanine-DNA methyltransferase (MGMT) promoter methylation status among glioblas...

CXCL12 impact on glioblastoma cells behaviors under dynamic culture conditions: Insights for developing new therapeutic approaches.

PloS one
Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Rece...

Generating 3D brain tumor regions in MRI using vector-quantization Generative Adversarial Networks.

Computers in biology and medicine
Medical image analysis has significantly benefited from advancements in deep learning, particularly in the application of Generative Adversarial Networks (GANs) for generating realistic and diverse images that can augment training datasets. The commo...

Leveraging transfer learning-driven convolutional neural network-based semantic segmentation model for medical image analysis using MRI images.

Scientific reports
Recognition and segmentation of brain tumours (BT) using MR images are valuable and tedious processes in the healthcare industry. Earlier diagnosis and localization of BT provide timely options to select effective treatment plans for the doctors and ...

Convolutional neural network-assisted Raman spectroscopy for high-precision diagnosis of glioblastoma.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Glioblastoma multiforme (GBM) is the most lethal intracranial tumor with a median survival of approximately 15 months. Due to its highly invasive properties, it is particularly difficult to accurately identify the tumor margins intraoperatively. The ...

Personalized predictions of Glioblastoma infiltration: Mathematical models, Physics-Informed Neural Networks and multimodal scans.

Medical image analysis
Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the pred...

Advancing brain tumor classification: A robust framework using EfficientNetV2 transfer learning and statistical analysis.

Computers in biology and medicine
Brain tumors are a significant health risk threatening humanity, and they seem to be unique challenges due to their critical location and the complexity of accurate diagnosis and treatment planning. Accurate and timely diagnosis and appropriate treat...