AIMC Topic: Brain Neoplasms

Clear Filters Showing 31 to 40 of 1072 articles

Automatic smart brain tumor classification and prediction system using deep learning.

Scientific reports
A brain tumor is a serious medical condition characterized by the abnormal growth of cells within the brain. It can cause a range of symptoms, including headaches, seizures, cognitive impairment, and changes in behavior. Brain tumors pose a significa...

CUAMT: A MRI semi-supervised medical image segmentation framework based on contextual information and mixed uncertainty.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Semi-supervised medical image segmentation is a class of machine learning paradigms for segmentation model training and inference using both labeled and unlabeled medical images, which can effectively reduce the data labelin...

UBTD2 protein molecules emerges as a key prognostic protein marker in glioma: Insights from integrated omics and machine learning analysis of GRM7, NCAPG, CEP55, and other biomarkers.

International journal of biological macromolecules
Glioma is a malignant brain tumor with poor prognosis, and there is an urgent need to find effective biomarkers for early diagnosis and treatment. The aim of this study was to explore the potential of UBTD2 as a key prognostic protein marker for glio...

Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction.

Scientific reports
Glioma, a malignant intracranial tumor with high invasiveness and heterogeneity, significantly impacts patient survival. This study integrates multi-omics data to improve prognostic prediction and identify therapeutic targets. Using single-cell data ...

Tailored self-supervised pretraining improves brain MRI diagnostic models.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Self-supervised learning has shown potential in enhancing deep learning methods, yet its application in brain magnetic resonance imaging (MRI) analysis remains underexplored. This study seeks to leverage large-scale, unlabeled public brain MRI datase...

Identification of Recurrence-associated Gene Signatures and Machine Learning-based Prediction in IDH-Wildtype Histological Glioblastoma.

Journal of molecular neuroscience : MN
Glioblastoma (GBM) is a highly aggressive brain tumor with frequent recurrence, yet the molecular mechanisms driving recurrence remain poorly understood. Identifying recurrence-associated genes may improve prognosis and treatment strategies. We appli...

MDAL: Modality-difference-based active learning for multimodal medical image analysis via contrastive learning and pointwise mutual information.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Multimodal medical images reveal different characteristics of the same anatomy or lesion, offering significant clinical value. Deep learning has achieved widespread success in medical image analysis with large-scale labeled datasets. However, annotat...

Federated learning with integrated attention multiscale model for brain tumor segmentation.

Scientific reports
Brain tumors are an extremely deadly condition and the growth of abnormal cells that have formed inside the brain causes the illness. According to studies, Magnetic Resonance Imaging (MRI) is a fundamental imaging method that is frequently used in me...

Unsupervised brain MRI tumour segmentation via two-stage image synthesis.

Medical image analysis
Deep learning shows promise in automated brain tumour segmentation, but it depends on costly expert annotations. Recent advances in unsupervised learning offer an alternative by using synthetic data for training. However, the discrepancy between real...

Large-scale bulk and single-cell RNA sequencing combined with machine learning reveals glioblastoma-associated neutrophil heterogeneity and establishes a VEGFA neutrophil prognostic model.

Biology direct
BACKGROUND: Neutrophils play a key role in the tumor microenvironment (TME); however, their functions in glioblastoma (GBM) are overlooked and insufficiently studied. A detailed analysis of GBM-associated neutrophil (GBMAN) subpopulations may offer n...