AIMC Topic: Brain

Clear Filters Showing 981 to 990 of 4188 articles

A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer's disease using resting-state functional network connectivity.

PloS one
Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it i...

s-TBN: A New Neural Decoding Model to Identify Stimulus Categories From Brain Activity Patterns.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Neural decoding is still a challenging and a hot topic in neurocomputing science. Recently, many studies have shown that brain network patterns containing rich spatiotemporal structural information represent the brain's activation information under e...

Parkinson's Disease Recognition Using Decorrelated Convolutional Neural Networks: Addressing Imbalance and Scanner Bias in rs-fMRI Data.

Biosensors
Parkinson's disease (PD) is a neurodegenerative and progressive disease that impacts the nerve cells in the brain and varies from person to person. The exact cause of PD is still unknown, and the diagnosis of PD does not include a specific objective ...

Psychological and Brain Responses to Artificial Intelligence's Violation of Community Ethics.

Cyberpsychology, behavior and social networking
Human moral reactions to artificial intelligence (AI) agents' behavior constitute an important aspect of modern-day human-AI relationships. Although previous studies have mainly focused on autonomy ethics, this study investigates how individuals judg...

Investigating the discrimination ability of 3D convolutional neural networks applied to altered brain MRI parametric maps.

Artificial intelligence in medicine
Convolutional neural networks (CNNs) are gradually being recognized in the neuroimaging community as a powerful tool for image analysis. Despite their outstanding performances, some aspects of CNN functioning are still not fully understood by human o...

Deep learning-based super-resolution of structural brain MRI at 1.5 T: application to quantitative volume measurement.

Magma (New York, N.Y.)
OBJECTIVE: This study investigated the feasibility of using deep learning-based super-resolution (DL-SR) technique on low-resolution (LR) images to generate high-resolution (HR) MR images with the aim of scan time reduction. The efficacy of DL-SR was...

MRI reconstruction with enhanced self-similarity using graph convolutional network.

BMC medical imaging
BACKGROUND: Recent Convolutional Neural Networks (CNNs) perform low-error reconstruction in fast Magnetic Resonance Imaging (MRI). Most of them convolve the image with kernels and successfully explore the local information. Nonetheless, the non-local...

Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study.

International journal of medical informatics
PURPOSE: To evaluate the diagnostic efficacy of a developed artificial intelligence (AI) platform incorporating deep learning algorithms for the automated detection of intracranial aneurysms in time-of-flight (TOF) magnetic resonance angiography (MRA...

A ResNet mini architecture for brain age prediction.

Scientific reports
The brain presents age-related structural and functional changes in the human life, with different extends between subjects and groups. Brain age prediction can be used to evaluate the development and aging of human brain, as well as providing valuab...

ADHD classification with cross-dataset feature selection for biomarker consistency detection.

Journal of neural engineering
Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children. While numerous intelligent methods are applied for its subjective diagnosis, they seldom consider the consistency problem of ADHD biomarkers. In p...