AIMC Topic: Breath Holding

Clear Filters Showing 1 to 10 of 35 articles

Data-efficient generalization of AI transformers for noise reduction in ultra-fast lung PET scans.

European journal of nuclear medicine and molecular imaging
PURPOSE: Respiratory motion during PET acquisition may produce lesion blurring. Ultra-fast 20-second breath-hold (U2BH) PET reduces respiratory motion artifacts, but the shortened scanning time increases statistical noise and may affect diagnostic qu...

Machine learning model for predicting DIBH non-eligibility in left-sided breast cancer radiotherapy: Development, validation and clinical impact analysis.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
OBJECTIVE: Multi-day assessments accurately identify patients with left-sided breast cancer who are ineligible for irradiation in Deep Inspiration Breath Hold (DIBH) and minimise on-couch treatment time in those who are eligible. The challenge of imp...

Development of a machine learning tool to predict deep inspiration breath hold requirement for locoregional right-sided breast radiation therapy patients.

Biomedical physics & engineering express
. This study presents machine learning (ML) models that predict if deep inspiration breath hold (DIBH) is needed based on lung dose in right-sided breast cancer patients during the initial computed tomography (CT) appointment.. Anatomic distances wer...

Improved Image Quality Through Deep Learning Acceleration of Gradient-Echo Acquisitions in Uterine MRI: First Application with the Female Pelvis.

Academic radiology
RATIONALE AND OBJECTIVES: The aim of this study was to compare the image quality of a deep learning (DL)-accelerated volumetric interpolated breath-hold examination (VIBE) sequence with a standard (ST) VIBE sequence in assessing the uterus.

Deep-Learning-Based Reconstruction of Single-Breath-Hold 3 mm HASTE Improves Abdominal Image Quality and Reduces Acquisition Time: A Quantitative Analysis.

Current oncology (Toronto, Ont.)
Breath-hold T2-weighted half-Fourier acquisition single-shot turbo spin echo (HASTE) magnetic resonance imaging (MRI) of the upper abdomen with a slice thickness below 5 mm suffers from high image noise and blurring. The purpose of this prospective ...

Attention incorporated network for sharing low-rank, image and k-space information during MR image reconstruction to achieve single breath-hold cardiac Cine imaging.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Cardiac Cine Magnetic Resonance Imaging (MRI) provides an accurate assessment of heart morphology and function in clinical practice. However, MRI requires long acquisition times, with recent deep learning-based methods showing great promise to accele...

Breath-hold diffusion-weighted MR imaging (DWI) using deep learning reconstruction: Comparison with navigator triggered DWI in patients with malignant liver tumors.

Radiography (London, England : 1995)
INTRODUCTION: This study investigated the feasibility of single breath-hold (BH) diffusion-weighted MR imaging (DWI) using deep learning reconstruction (DLR) compared to navigator triggered (NT) DWI in patients with malignant liver tumors.

Estimation of heart dose in left breast cancer radiotherapy: Assessment of vDIBH feasibility using the supervised machine learning algorithm.

Journal of applied clinical medical physics
BACKGROUND AND OBJECTIVE: The volunteer deep inspiration breath hold (vDIBH) technique is used to reduce the heart dose in left breast cancer radiotherapy. Many times, it is faced that despite rigorous exercise and training, not all patients get bene...

Deep learning reconstruction for accelerated high-resolution upper abdominal MRI improves lesion detection without time penalty.

Diagnostic and interventional imaging
PURPOSE: The purpose of this study was to compare a conventional T1-weighted volumetric interpolated breath-hold examination (VIBE) sequence with a DL-reconstructed accelerated high-resolution VIBE sequence (HR-VIBE) in terms of image quality, lesion...

Deep Learning Reconstruction for Enhanced Resolution and Image Quality in Breath-Hold MRCP: A Preliminary Study.

Journal of computer assisted tomography
OBJECTIVE: This preliminary study aims to assess the image quality of enhanced-resolution deep learning reconstruction (ER-DLR) in magnetic resonance cholangiopancreatography (MRCP) and compare it with non-ER-DLR MRCP images.