AIMC Topic: Carcinoma, Renal Cell

Clear Filters Showing 21 to 30 of 204 articles

Integrating radiomics and gene expression by mapping on the image with improved DeepInsight for clear cell renal cell carcinoma.

Cancer genetics
BACKGROUND: Radiomics analysis extracts high-dimensional features from medical images, which are used to predict outcomes in machine learning (ML). Recently, deep-learning methods have become applicable to image data converted from nonimage samples.

Integration of radiomic and deep features to reliably differentiate benign renal lesions from renal cell carcinoma.

European journal of radiology
PURPOSE: Accurate differentiation of benign renal lesions from renal cell carcinoma (RCC) is crucial for optimized management, particularly for small renal lesions (≤4 cm in diameter). This study aimed to integrate clinical data, radiomic features, a...

Fully automated segmentation and classification of renal tumors on CT scans via machine learning.

BMC cancer
BACKGROUND: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.

Diagnostic performance of artificial intelligence in detection of renal cell carcinoma: a systematic review and meta-analysis.

BMC cancer
OBJECTIVES: The detection of renal cell carcinoma (RCC) tumors in the earlier stages is of great importance for more effective treatment. Encouraged by the key role of imaging in the management of RCC, we conducted a systematic review and meta-analys...

Integrated multi-omics analysis identifies a machine learning-derived signature for predicting prognosis and therapeutic vulnerability in clear cell renal cell carcinoma.

Life sciences
AIMS: Clear cell renal cell carcinoma (ccRCC) shows considerable variation within and between tumors, presents varying treatment responses among patients, possibly due to molecular distinctions. This study utilized a multi-center and multi-omics anal...

Integrated RNA sequencing analysis and machine learning identifies a metabolism-related prognostic signature in clear cell renal cell carcinoma.

Scientific reports
The connection between metabolic reprogramming and tumor progression has been demonstrated in an increasing number of researches. However, further research is required to identify how metabolic reprogramming affects interpatient heterogeneity and pro...

Leveraging explainable AI and large-scale datasets for comprehensive classification of renal histologic types.

Scientific reports
Recently, as the number of cancer patients has increased, much research is being conducted for efficient treatment, including the use of artificial intelligence in genitourinary pathology. Recent research has focused largely on the classification of ...

Interpretable CT Radiomics-based Machine Learning Model for Preoperative Prediction of Ki-67 Expression in Clear Cell Renal Cell Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).

Machine learning models predict the progression of long-term renal insufficiency in patients with renal cancer after radical nephrectomy.

BMC nephrology
BACKGROUND: Chronic Kidney Disease (CKD) is a common severe complication after radical nephrectomy in patients with renal cancer. The timely and accurate prediction of the long-term progression of renal function post-surgery is crucial for early inte...

Deep learning-based prediction of tumor aggressiveness in RCC using multiparametric MRI: a pilot study.

International urology and nephrology
OBJECTIVE: To investigate the value of multiparametric magnetic resonance imaging (MRI) as a non-invasive method to predict the aggressiveness of renal cell carcinoma (RCC) by developing a convolutional neural network (CNN) model and fusing it with c...