AIMC Topic: Cell Nucleus

Clear Filters Showing 101 to 110 of 184 articles

3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis.

NPJ systems biology and applications
During embryogenesis, cells repeatedly divide and dynamically change their positions in three-dimensional (3D) space. A robust and accurate algorithm to acquire the 3D positions of the cells would help to reveal the mechanisms of embryogenesis. To ac...

LncLocation: Efficient Subcellular Location Prediction of Long Non-Coding RNA-Based Multi-Source Heterogeneous Feature Fusion.

International journal of molecular sciences
Recent studies uncover that subcellular location of long non-coding RNAs (lncRNAs) can provide significant information on its function. Due to the lack of experimental data, the number of lncRNAs is very limited, experimentally verified subcellular l...

NuSeT: A deep learning tool for reliably separating and analyzing crowded cells.

PLoS computational biology
Segmenting cell nuclei within microscopy images is a ubiquitous task in biological research and clinical applications. Unfortunately, segmenting low-contrast overlapping objects that may be tightly packed is a major bottleneck in standard deep learni...

Automatic Detection Method for Cancer Cell Nucleus Image Based on Deep-Learning Analysis and Color Layer Signature Analysis Algorithm.

Sensors (Basel, Switzerland)
Exploring strategies to treat cancer has always been an aim of medical researchers. One of the available strategies is to use targeted therapy drugs to make the chromosomes in cancer cells unstable such that cell death can be induced, and the elimina...

Triple U-net: Hematoxylin-aware nuclei segmentation with progressive dense feature aggregation.

Medical image analysis
Nuclei segmentation is a vital step for pathological cancer research. It is still an open problem due to some difficulties, such as color inconsistency introduced by non-uniform manual operations, blurry tumor nucleus boundaries and overlapping tumor...

Keras R-CNN: library for cell detection in biological images using deep neural networks.

BMC bioinformatics
BACKGROUND: A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identif...

nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer.

Cell systems
Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light micro...

Robust classification of cell cycle phase and biological feature extraction by image-based deep learning.

Molecular biology of the cell
Across the cell cycle, the subcellular organization undergoes major spatiotemporal changes that could in principle contain biological features that could potentially represent cell cycle phase. We applied convolutional neural network-based classifier...

Cellular community detection for tissue phenotyping in colorectal cancer histology images.

Medical image analysis
Classification of various types of tissue in cancer histology images based on the cellular compositions is an important step towards the development of computational pathology tools for systematic digital profiling of the spatial tumor microenvironme...