AIMC Topic: Child, Preschool

Clear Filters Showing 341 to 350 of 1289 articles

Exploring Machine Learning Algorithms to Predict Diarrhea Disease and Identify its Determinants among Under-Five Years Children in East Africa.

Journal of epidemiology and global health
BACKGROUND: The second most common cause of death for children under five is diarrhea. Early Predicting diarrhea disease and identify its determinants (factors) using an advanced machine learning model is the most effective way to save the lives of c...

Communicating exploratory unsupervised machine learning analysis in age clustering for paediatric disease.

BMJ health & care informatics
BACKGROUND: Despite the increasing availability of electronic healthcare record (EHR) data and wide availability of plug-and-play machine learning (ML) Application Programming Interfaces, the adoption of data-driven decision-making within routine hos...

An artificial intelligence platform for the screening and managing of strabismus.

Eye (London, England)
OBJECTIVES: Considering the escalating incidence of strabismus and its consequential jeopardy to binocular vision, there is an imperative demand for expeditious and precise screening methods. This study was to develop an artificial intelligence (AI) ...

Predicting hospital admissions for upper respiratory tract complaints: An artificial neural network approach integrating air pollution and meteorological factors.

Environmental monitoring and assessment
This study uses artificial neural networks (ANNs) to examine the intricate relationship between air pollutants, meteorological factors, and respiratory disorders. The study investigates the correlation between hospital admissions for respiratory dise...

Development of machine learning models predicting mortality using routinely collected observational health data from 0-59 months old children admitted to an intensive care unit in Bangladesh: critical role of biochemistry and haematology data.

BMJ paediatrics open
INTRODUCTION: Treatment in the intensive care unit (ICU) generates complex data where machine learning (ML) modelling could be beneficial. Using routine hospital data, we evaluated the ability of multiple ML models to predict inpatient mortality in a...

Pediatric cardiac surgery: machine learning models for postoperative complication prediction.

Journal of anesthesia
PURPOSE: Managing children undergoing cardiac surgery with cardiopulmonary bypass (CPB) presents a significant challenge for anesthesiologists. Machine Learning (ML)-assisted tools have the potential to enhance the recognition of patients at risk of ...

A preliminary prediction model of pediatric Mycoplasma pneumoniae pneumonia based on routine blood parameters by using machine learning method.

BMC infectious diseases
BACKGROUND: The prevalence and severity of pediatric Mycoplasma pneumoniae pneumonia (MPP) poses a significant threat to the health and lives of children. In this study, we aim to systematically evaluate the value of routine blood parameters in predi...

Diagnostic performance of an AI algorithm for the detection of appendicular bone fractures in pediatric patients.

European journal of radiology
PURPOSE: To evaluate the diagnostic performance of an Artificial Intelligence (AI) algorithm, previously trained using both adult and pediatric patients, for the detection of acute appendicular fractures in the pediatric population on conventional X-...

Accelerated cardiac magnetic resonance imaging using deep learning for volumetric assessment in children.

Pediatric radiology
BACKGROUND: Ventricular volumetry using a short-axis stack of two-dimensional (D) cine balanced steady-state free precession (bSSFP) sequences is crucial in any cardiac magnetic resonance imaging (MRI) examination. This task becomes particularly chal...