AIMC Topic: Child, Preschool

Clear Filters Showing 421 to 430 of 1289 articles

Machine Learning-Based Approach to Predict Last-Minute Cancellation of Pediatric Day Surgeries.

Computers, informatics, nursing : CIN
The last-minute cancellation of surgeries profoundly affects patients and their families. This research aimed to forecast these cancellations using EMR data and meteorological conditions at the time of the appointment, using a machine learning approa...

A machine learning model for the early diagnosis of bloodstream infection in patients admitted to the pediatric intensive care unit.

PloS one
Bloodstream infection (BSI) is associated with increased morbidity and mortality in the pediatric intensive care unit (PICU) and high healthcare costs. Early detection and appropriate treatment of BSI may improve patient's outcome. Data on machine-le...

Expert-level sleep staging using an electrocardiography-only feed-forward neural network.

Computers in biology and medicine
Reliable classification of sleep stages is crucial in sleep medicine and neuroscience research for providing valuable insights, diagnoses, and understanding of brain states. The current gold standard method for sleep stage classification is polysomno...

Pediatric tympanostomy tube assessment via deep learning.

American journal of otolaryngology
PURPOSE: Tympanostomy tube (TT) placement is the most frequently performed ambulatory surgery in children under 15. After the procedure it is recommended that patients follow up regularly for "tube checks" until TT extrusion. Such visits incur direct...

Combining deep neural networks, a rule-based expert system and targeted manual coding for ICD-10 coding causes of death of French death certificates from 2018 to 2019.

International journal of medical informatics
OBJECTIVE: For ICD-10 coding causes of death in France in 2018 and 2019, predictions by deep neural networks (DNNs) are employed in addition to fully automatic batch coding by a rule-based expert system and to interactive coding by the coding team fo...

An individualized protein-based prognostic model to stratify pediatric patients with papillary thyroid carcinoma.

Nature communications
Pediatric papillary thyroid carcinomas (PPTCs) exhibit high inter-tumor heterogeneity and currently lack widely adopted recurrence risk stratification criteria. Hence, we propose a machine learning-based objective method to individually predict their...

Children's anthropomorphism of inanimate agents.

Wiley interdisciplinary reviews. Cognitive science
This review article examines the extant literature on animism and anthropomorphism in infants and young children. A substantial body of work indicates that both infants and young children have a broad concept of what constitutes a sentient agent and ...

Diagnostic support in pediatric craniopharyngioma using deep learning.

Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
PURPOSE: We studied a pediatric group of patients with sellar-suprasellar tumors, aiming to develop a convolutional deep learning algorithm for radiological assistance to classify them into their respective cohort.

Enhancing early autism diagnosis through machine learning: Exploring raw motion data for classification.

PloS one
In recent years, research has been demonstrating that movement analysis, utilizing machine learning methods, can be a promising aid for clinicians in supporting autism diagnostic process. Within this field of research, we aim to explore new models an...

Machine learning for predicting Chagas disease infection in rural areas of Brazil.

PLoS neglected tropical diseases
INTRODUCTION: Chagas disease is a severe parasitic illness that is prevalent in Latin America and often goes unaddressed. Early detection and treatment are critical in preventing the progression of the illness and its associated life-threatening comp...