Clozapine is widely regarded as one of the most effective therapeutics for treatment-resistant schizophrenia. Despite its proven efficacy, the therapeutic use of clozapine is complicated by its narrow therapeutic index, which necessitates rapid and p...
We apply machine learning techniques to navigate the multifaceted landscape of schizophrenia. Our method entails the development of predictive models, emphasizing peripheral inflammatory biomarkers, which are classified into treatment response subgro...
The Australian and New Zealand journal of psychiatry
Nov 17, 2021
OBJECTIVE: Schizophrenia, a complex psychiatric disorder, is often associated with cognitive, neurological and neuroimaging abnormalities. The processes underlying these abnormalities, and whether a subset of people with schizophrenia have a neuropro...
The question of molecular similarity is core in cheminformatics and is usually assessed via a comparison based on vectors of properties or molecular fingerprints. We recently exploited variational autoencoders to embed 6M molecules in a chemical spa...
BMC medical informatics and decision making
Mar 13, 2019
BACKGROUND: Medications are frequently used for treating schizophrenia, however, anti-psychotic drug use is known to lead to cases of pneumonia. The purpose of our study is to build a model for predicting hospital-acquired pneumonia among schizophren...
Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
Aug 27, 2014
OBJECTIVE: To develop a machine learning (ML) methodology based on features extracted from odd-ball auditory evoked potentials to identify neurophysiologic changes induced by Clozapine (CLZ) treatment in responding schizophrenic (SCZ) subjects. This ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.