AIMC Topic: Cluster Analysis

Clear Filters Showing 41 to 50 of 1361 articles

Point-of-interest recommender model using geo-tagged photos in accordance with imperialist Fuzzy C-means clustering.

PloS one
Although recommender systems (RSs) strive to provide recommendations based on individuals' histories and preferences, most recommendations made by these systems do not utilize location and time-based information. This paper presents a travel recommen...

Advanced machine learning-driven characterization of new natural cellulosic Lablab purpureus fibers through PCA and K-means clustering techniques.

International journal of biological macromolecules
The increasing demand for sustainable and eco-friendly materials has spurred significant interest in natural fibers as alternatives to synthetic reinforcements in composite applications. This study aims to explore the potential of Lablab purpureus fi...

Tracking the spatiotemporal evolution of groundwater chemistry in the Quaternary aquifer system of Debrecen area, Hungary: integration of classical and unsupervised learning methods.

Environmental science and pollution research international
Monitoring changes in groundwater quality over time helps identify time-dependent factors influencing water safety and supports the development of effective management strategies. This study investigates the spatiotemporal evolution of groundwater ch...

Structural Similarity, Activity, and Toxicity of Mycotoxins: Combining Insights from Unsupervised and Supervised Machine Learning Algorithms.

Journal of agricultural and food chemistry
A large number of mycotoxins and related fungal metabolites have not been assessed in terms of their toxicological impacts. Current methodologies often prioritize specific target families, neglecting the complexity and presence of co-occurring compou...

Author name disambiguation based on heterogeneous graph neural network.

PloS one
With the dramatic increase in the number of published papers and the continuous progress of deep learning technology, the research on name disambiguation is at a historic peak, the number of paper authors is increasing every year, and the situation o...

stDyer enables spatial domain clustering with dynamic graph embedding.

Genome biology
Spatially resolved transcriptomics (SRT) data provide critical insights into gene expression patterns within tissue contexts, necessitating effective methods for identifying spatial domains. We introduce stDyer, an end-to-end deep learning framework ...

A simple clustering approach to map the human brain's cortical semantic network organization during task.

NeuroImage
Constructing task-state large-scale brain networks can enhance our understanding of the organization of brain functions during cognitive tasks. The primary goal of brain network partitioning is to cluster functionally homogeneous brain regions. Howev...

A recursive embedding and clustering technique for unraveling asymptomatic kidney disease using laboratory data and machine learning.

Scientific reports
Traditional methods for diagnosing chronic kidney disease (CKD) via laboratory data may not be capable of identifying early kidney disease. Kidney biopsy is unsuitable for regular screening, and imaging tests are costly and time-consuming. Several st...

VSR-Net: Vessel-Like Structure Rehabilitation Network With Graph Clustering.

IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
The morphologies of vessel-like structures, such as blood vessels and nerve fibres, play significant roles in disease diagnosis, e.g., Parkinson's disease. Although deep network-based refinement segmentation and topology-preserving segmentation metho...

Simpler Protein Domain Identification Using Spectral Clustering.

Proteins
The decomposition of a biomolecular complex into domains is an important step to investigate biological functions and ease structure determination. A successful approach to do so is the SPECTRUS algorithm, which provides a segmentation based on spect...