AI Medical Compendium Topic:
Computational Biology

Clear Filters Showing 721 to 730 of 4118 articles

Screening of Secretory Proteins Linking Major Depressive Disorder with Heart Failure Based on Comprehensive Bioinformatics Analysis and Machine Learning.

Biomolecules
BACKGROUND: Major depressive disorder (MDD) plays a crucial role in the occurrence of heart failure (HF). This investigation was undertaken to explore the possible mechanism of MDD's involvement in HF pathogenesis and identify candidate biomarkers fo...

Characterizing mitochondrial features in osteoarthritis through integrative multi-omics and machine learning analysis.

Frontiers in immunology
PURPOSE: Osteoarthritis (OA) stands as the most prevalent joint disorder. Mitochondrial dysfunction has been linked to the pathogenesis of OA. The main goal of this study is to uncover the pivotal role of mitochondria in the mechanisms driving OA dev...

A variational autoencoder trained with priors from canonical pathways increases the interpretability of transcriptome data.

PLoS computational biology
Interpreting transcriptome data is an important yet challenging aspect of bioinformatic analysis. While gene set enrichment analysis is a standard tool for interpreting regulatory changes, we utilize deep learning techniques, specifically autoencoder...

Machine-learning-based structural analysis of interactions between antibodies and antigens.

Bio Systems
Computational analysis of paratope-epitope interactions between antibodies and their corresponding antigens can facilitate our understanding of the molecular mechanism underlying humoral immunity and boost the design of new therapeutics for many dise...

Accurate Prediction of Protein Structural Flexibility by Deep Learning Integrating Intricate Atomic Structures and Cryo-EM Density Information.

Nature communications
The dynamics of proteins are crucial for understanding their mechanisms. However, computationally predicting protein dynamic information has proven challenging. Here, we propose a neural network model, RMSF-net, which outperforms previous methods and...

Advances in Computational Biology for Diagnosing Neurodegenerative Diseases: A Comprehensive Review.

Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology
The numerous and varied forms of neurodegenerative illnesses provide a considerable challenge to contemporary healthcare. The emergence of artificial intelligence has fundamentally changed the diagnostic picture by providing effective and early means...

Detection of disease-specific signatures in B cell repertoires of lymphomas using machine learning.

PLoS computational biology
The classification of B cell lymphomas-mainly based on light microscopy evaluation by a pathologist-requires many years of training. Since the B cell receptor (BCR) of the lymphoma clonotype and the microenvironmental immune architecture are importan...

Subgraph-Aware Graph Kernel Neural Network for Link Prediction in Biological Networks.

IEEE journal of biomedical and health informatics
Identifying links within biological networks is important in various biomedical applications. Recent studies have revealed that each node in a network may play a unique role in different links, but most link prediction methods overlook distinctive no...

MAMLCDA: A Meta-Learning Model for Predicting circRNA-Disease Association Based on MAML Combined With CNN.

IEEE journal of biomedical and health informatics
Circular RNAs (circRNAs) exist in vivo and are a class of noncoding RNA molecules. They have a single-stranded, closed, annular structure. Many studies have shown that circRNAs and diseases are linked. Therefore, it is critical to build a reliable an...

A Hierarchical Graph Neural Network Framework for Predicting Protein-Protein Interaction Modulators With Functional Group Information and Hypergraph Structure.

IEEE journal of biomedical and health informatics
Accurate prediction of small molecule modulators targeting protein-protein interactions (PPIMs) remains a significant challenge in drug discovery. Existing machine learning-based models rely on manual feature engineering, which is tedious and task-sp...