AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Coronary Angiography

Showing 261 to 270 of 377 articles

Clear Filters

Improved diagnostic accuracy for myocardial perfusion imaging using artificial neural networks on different input variables including clinical and quantification data.

Revista espanola de medicina nuclear e imagen molecular
OBJECTIVE: Diagnostic accuracy of myocardial perfusion imaging (MPI) is not optimal to predict the result of angiography. The current study aimed at investigating the application of artificial neural network (ANN) to integrate the clinical data with ...

Radiomics versus Visual and Histogram-based Assessment to Identify Atheromatous Lesions at Coronary CT Angiography: An ex Vivo Study.

Radiology
Background Visual and histogram-based assessments of coronary CT angiography have limited accuracy in the identification of advanced lesions. Radiomics-based machine learning (ML) could provide a more accurate tool. Purpose To compare the diagnostic ...

Machine learning-based coronary artery disease diagnosis: A comprehensive review.

Computers in biology and medicine
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and often leads to a heart attack. It annually causes millions of deaths and billions of dollars in financial losses worldwide. Angiography, which is invasive and risky, is...

Scoring of Coronary Artery Disease Characteristics on Coronary CT Angiograms by Using Machine Learning.

Radiology
Background Coronary CT angiography contains prognostic information but the best method to extract these data remains unknown. Purpose To use machine learning to develop a model of vessel features to discriminate between patients with and without subs...

Motion estimation and correction in cardiac CT angiography images using convolutional neural networks.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Cardiac motion artifacts frequently reduce the interpretability of coronary computed tomography angiography (CCTA) images and potentially lead to misinterpretations or preclude the diagnosis of coronary artery disease (CAD). In this paper, a novel mo...

On-Site Computed Tomography-Derived Fractional Flow Reserve Using a Machine-Learning Algorithm - Clinical Effectiveness in a Retrospective Multicenter Cohort.

Circulation journal : official journal of the Japanese Circulation Society
BACKGROUND: This study evaluated the diagnostic capability of on-site coronary computed tomography-derived computational fractional flow reserve (CT-FFR) determinations for detecting coronary artery disease (CAD), as assessed by invasive fractional f...

Effect of Tube Voltage on Diagnostic Performance of Fractional Flow Reserve Derived From Coronary CT Angiography With Machine Learning: Results From the MACHINE Registry.

AJR. American journal of roentgenology
Coronary CT angiography (CCTA)-based methods allow noninvasive estimation of fractional flow reserve (cFFR), recently through use of a machine learning (ML) algorithm (cFFR). However, attenuation values vary according to the tube voltage used, and i...

Extensive phenotype data and machine learning in prediction of mortality in acute coronary syndrome - the MADDEC study.

Annals of medicine
Investigation of the clinical potential of extensive phenotype data and machine learning (ML) in the prediction of mortality in acute coronary syndrome (ACS). The value of ML and extensive clinical data was analyzed in a retrospective registry stud...