AIMC Topic: Coronary Vessels

Clear Filters Showing 1 to 10 of 256 articles

A plaque recognition algorithm for coronary OCT images by Dense Atrous Convolution and attention mechanism.

PloS one
Currently, plaque segmentation in Optical Coherence Tomography (OCT) images of coronary arteries is primarily carried out manually by physicians, and the accuracy of existing automatic segmentation techniques needs further improvement. To furnish eff...

Deep learning-based classification of coronary arteries and left ventricle using multimodal data for autonomous protocol selection or adjustment in angiography.

Scientific reports
Optimal selection of X-ray imaging parameters is crucial in coronary angiography and structural cardiac procedures to ensure optimal image quality and minimize radiation exposure. These anatomydependent parameters are organized into customizable orga...

Fast and automatic coronary artery segmentation using nnU-Net for non-contrast enhanced magnetic resonance coronary angiography.

The international journal of cardiovascular imaging
Non-contrast enhanced magnetic resonance coronary angiography (MRCA) is a promising coronary heart disease screening modality. However, its clinical application is hindered by inherent limitations, including low spatial resolution and insufficient co...

Optimising coronary imaging decisions with machine learning: an external validation study.

Open heart
BACKGROUND: Exclusion of coronary stenosis in individuals with suggestive symptoms is challenging. Cardiac CT or coronary angiography is often used but is inefficient and costly and involves risks. Sex-stratified algorithms based on electronic health...

AI-based detection and classification of anomalous aortic origin of coronary arteries using coronary CT angiography images.

Nature communications
Anomalous aortic origin of the coronary artery (AAOCA) is a rare cardiac condition that can lead to ischemia or sudden cardiac death, yet it is often overlooked or falsely classified in routine coronary CT angiography (CCTA). Here, we developed, vali...

AI-Quantitative CT Coronary Plaque Features Associate With a Higher Relative Risk in Women: CONFIRM2 Registry.

Circulation. Cardiovascular imaging
BACKGROUND: Coronary plaque features are imaging biomarkers of cardiovascular risk, but less is known about sex-specific patterns in their prognostic value. This study aimed to define sex differences in the coronary atherosclerotic phenotypes assesse...

Non-invasive derivation of instantaneous free-wave ratio from invasive coronary angiography using a new deep learning artificial intelligence model and comparison with human operators' performance.

The international journal of cardiovascular imaging
Invasive coronary physiology is underused and carries risks/costs. Artificial Intelligence (AI) might enable non-invasive physiology from invasive coronary angiography (CAG), possibly outperforming humans, but has seldom been explored, especially for...

Artificial intelligence driven plaque characterization and functional assessment from CCTA using OCT-based automation: A prospective study.

International journal of cardiology
BACKGROUND: We aimed to develop and validate an Artificial Intelligence (AI) model that leverages CCTA and optical coherence tomography (OCT) images for automated analysis of plaque characteristics and coronary function.