AIMC Topic: Deep Learning

Clear Filters Showing 1971 to 1980 of 26532 articles

Leveraging deep-learning and unconventional data for real-time surveillance, forecasting, and early warning of respiratory pathogens outbreak.

Artificial intelligence in medicine
BACKGROUND: Controlling re-emerging outbreaks such as COVID-19 is a critical concern to global health. Disease forecasting solutions are extremely beneficial to public health emergency management. This work aims to design and deploy a framework for r...

ABIET: An explainable transformer for identifying functional groups in biological active molecules.

Computers in biology and medicine
Recent advancements in deep learning have revolutionized the field of drug discovery, with Transformer-based models emerging as powerful tools for molecular design and property prediction. However, the lack of explainability in such models remains a ...

Biomechanical Risk Classification in Repetitive Lifting Using Multi-Sensor Electromyography Data, Revised National Institute for Occupational Safety and Health Lifting Equation, and Deep Learning.

Biosensors
Repetitive lifting tasks in occupational settings often result in shoulder injuries, impacting both health and productivity. Accurately assessing the biomechanical risk of these tasks remains a significant challenge in occupational ergonomics, partic...

Deep learning for automated hip fracture detection and classification : achieving superior accuracy.

The bone & joint journal
AIMS: The aim of this study was to develop and evaluate a deep learning-based model for classification of hip fractures to enhance diagnostic accuracy.

Predicting early recurrence in locally advanced gastric cancer after gastrectomy using CT-based deep learning model: a multicenter study.

International journal of surgery (London, England)
BACKGROUND: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Predicting early recurrence may help determine treatment strategies for LAGC. The goal is to d...

A continuous-action deep reinforcement learning-based agent for coronary artery centerline extraction in coronary CT angiography images.

Medical & biological engineering & computing
The lumen centerline of the coronary artery allows vessel reconstruction used to detect stenoses and plaques. Discrete-action-based centerline extraction methods suffer from artifacts and plaques. This study aimed to develop a continuous-action-based...

Smart home-assisted anomaly detection system for older adults: a deep learning approach with a comprehensive set of daily activities.

Medical & biological engineering & computing
Smart homes have the potential to enable remote monitoring of the health and well-being of older adults, leading to improved health outcomes and increased independence. However, current approaches only consider a limited set of daily activities and d...

Optimizing Skin Cancer Diagnosis: A Modified Ensemble Convolutional Neural Network for Classification.

Microscopy research and technique
Skin cancer is recognized as one of the most harmful cancers worldwide. Early detection of this cancer is an effective measure for treating the disease efficiently. Traditional skin cancer detection methods face scalability challenges and overfitting...

Why does my medical AI look at pictures of birds? Exploring the efficacy of transfer learning across domain boundaries.

Computer methods and programs in biomedicine
PURPOSE: In medical deep learning, models not trained from scratch are typically fine-tuned based on ImageNet-pretrained models. We posit that pretraining on data from the domain of the downstream task should almost always be preferable.

Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: This multicenter study aimed to develop and validate a multiscale deep learning radiomics nomogram for predicting recurrence-free survival (RFS) in patients with pancreatic ductal adenocarcinoma (PDAC).