AIMC Topic: Diabetes Mellitus, Type 1

Clear Filters Showing 121 to 130 of 145 articles

The Development and Potential Applications of an Automated Method for Detecting and Classifying Continuous Glucose Monitoring Patterns.

Journal of diabetes science and technology
INTRODUCTION: Continuous glucose monitoring (CGM) is emerging as a transformative tool for helping people with diabetes self-manage their glucose and supporting clinicians in effective treatment. Unfortunately, many CGM users, and clinicians, find in...

Prediction of Hypoglycemia From Continuous Glucose Monitoring in Insulin-Treated Patients With Type 2 Diabetes Using Transfer Learning on Type 1 Diabetes Data: A Deep Transfer Learning Approach.

Journal of diabetes science and technology
BACKGROUND: Hypoglycemia is common in insulin-treated type 2 diabetes (T2D) patients, which can lead to decreased quality of life or premature death. Deep learning models offer promise of accurate predictions, but data scarcity poses a challenge. Thi...

Using gut microbiome metagenomic hypervariable features for diabetes screening and typing through supervised machine learning.

Microbial genomics
Diabetes mellitus is a complex metabolic disorder and one of the fastest-growing global public health concerns. The gut microbiota is implicated in the pathophysiology of various diseases, including diabetes. This study utilized 16S rRNA metagenomic ...

Prediction of Poor Glycemic Control in Children with Type 1 Diabetes.

Studies in health technology and informatics
This study developed and validated a machine learning model for predicting glycemic control in children with type 1 diabetes at the time of diagnosis, revealing age at diagnosis as the most informative predictor.

Predicting the role of the human gut microbiome in type 1 diabetes using machine-learning methods.

Briefings in functional genomics
Gut microbes is a crucial factor in the pathogenesis of type 1 diabetes (T1D). However, it is still unclear which gut microbiota are the key factors affecting T1D and their influence on the development and progression of the disease. To fill these kn...

Predicting type 1 diabetes in children using electronic health records in primary care in the UK: development and validation of a machine-learning algorithm.

The Lancet. Digital health
BACKGROUND: Children presenting to primary care with suspected type 1 diabetes should be referred immediately to secondary care to avoid life-threatening diabetic ketoacidosis. However, early recognition of children with type 1 diabetes is challengin...

Neural-Net Artificial Pancreas: A Randomized Crossover Trial of a First-in-Class Automated Insulin Delivery Algorithm.

Diabetes technology & therapeutics
Automated insulin delivery (AID) is now integral to the clinical practice of type 1 diabetes (T1D). The objective of this pilot-feasibility study was to introduce a new regulatory and clinical paradigm-a Neural-Net Artificial Pancreas (NAP)-an encod...

Cost-effectiveness of Autonomous Point-of-Care Diabetic Retinopathy Screening for Pediatric Patients With Diabetes.

JAMA ophthalmology
IMPORTANCE: Screening for diabetic retinopathy is recommended for children with type 1 diabetes (T1D) and type 2 diabetes (T2D), yet screening rates remain low. Point-of-care diabetic retinopathy screening using autonomous artificial intelligence (AI...