Mannan-binding lectin (MBL) initiates the lectin pathway of complement and has been linked to albuminuria and mortality in diabetes. We hypothesize that MBL-associated serine protease 2 (MASP-2) deficiency will protect against diabetes-induced kidney...
BACKGROUND: Machine learning is increasingly recognized as a viable approach for identifying risk factors associated with diabetic kidney disease (DKD). However, the current state of real-world research lacks a comprehensive systematic analysis of th...
Podocyte injury plays a key role in pathogenesis of many kidney diseases with increased podocyte foot process width (FPW), an important measure of podocyte injury. Unfortunately, there is no consensus on the best way to estimate FPW and unbiased ster...
Computational and mathematical methods in medicine
Mar 10, 2022
This study was aimed at exploring the effect of ultrasound image evaluation of comprehensive nursing scheme based on artificial intelligence algorithms on patients with diabetic kidney disease (DKD). 44 patients diagnosed with DKD were randomly divid...
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, has become a massive global health burden. Despite considerable efforts, the underlying mechanisms have not yet been comprehensively understood. In this study, a systematic appr...
AIMS: This research work presented a comparative study of machine learning (ML), including two objectives: (i) determination of the risk factors of diabetic nephropathy (DN) based on principal component analysis (PCA) via different cutoffs; (ii) pred...
OBJECTIVES: In recent clinical studies, saxagliptin exhibited nephroprotective potential by lowering albuminuria. In this study, we aimed to determine whether these kidney effects of saxagliptin were mediated by changes in markers of kidney tubular d...
AIM: Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelXâ„¢) combining electronic health records (EHR) and biomarkers.
Artificial intelligence (AI) is expected to support clinical judgement in medicine. We constructed a new predictive model for diabetic kidney diseases (DKD) using AI, processing natural language and longitudinal data with big data machine learning, b...
Applying data mining and machine learning (ML) techniques to clinical data might identify predictive biomarkers for diabetic nephropathy (DN), a common complication of type 2 diabetes mellitus (T2DM). A retrospective analysis of the Action to Control...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.