AIMC Topic: Echocardiography

Clear Filters Showing 1 to 10 of 398 articles

Automated ejection fraction and risk stratification in cardiomyopathy patients with diverse LV geometry using 2D echocardiography.

Scientific reports
Cardiomyopathy often alters left ventricular geometry (LVG), impairing cardiac function. We developed a deep learning (DL) model to estimate left ventricular ejection fraction (LVEF) from echocardiographic images while accounting for LVG variability ...

Interpretable machine learning for predicting isolated basal septal hypertrophy.

PloS one
BACKGROUND: The basal septal hypertrophy(BSH) is an often under-recognized morphological change in the left ventricle. This is a common echocardiographic finding with a prevalence of approximately 7-20%, which may indicate early structural and functi...

Epicardial adipose tissue, myocardial remodelling and adverse outcomes in asymptomatic aortic stenosis: a post hoc analysis of a randomised controlled trial.

Heart (British Cardiac Society)
BACKGROUND: Epicardial adipose tissue represents a metabolically active visceral fat depot that is in direct contact with the left ventricular myocardium. While it is associated with coronary artery disease, little is known regarding its role in aort...

Semi-Supervised Echocardiography Video Segmentation via Adaptive Spatio-Temporal Tensor Semantic Awareness and Memory Flow.

IEEE transactions on medical imaging
Accurate segmentation of cardiac structures in echocardiography videos is vital for diagnosing heart disease. However, challenges such as speckle noise, low spatial resolution, and incomplete video annotations hinder the accuracy and efficiency of se...

Self-supervised learning for label-free segmentation in cardiac ultrasound.

Nature communications
Segmentation and measurement of cardiac chambers from ultrasound is critical, but laborious and poorly reproducible. Neural networks can assist, but supervised approaches require the same problematic manual annotations. We build a pipeline for self-s...

ProtoASNet: Comprehensive evaluation and enhanced performance with uncertainty estimation for aortic stenosis classification in echocardiography.

Medical image analysis
Aortic stenosis (AS) is a prevalent heart valve disease that requires accurate and timely diagnosis for effective treatment. Current methods for automated AS severity classification rely on black-box deep learning techniques, which suffer from a low ...

AI-enhanced guidance demonstrated improvement in novices' Apical-4-chamber and Apical-5-chamber views.

BMC medical education
INTRODUCTION: Artificial Intelligence (AI) modules might simplify the complexities of cardiac ultrasound (US) training by offering real-time, step-by-step guidance on probe manipulation for high-quality diagnostic imaging. This study investigates rea...

Value of Artificial Intelligence for Enhancing Suspicion of Cardiac Amyloidosis Using Electrocardiography and Echocardiography: A Narrative Review.

Journal of the American Heart Association
Nonspecific symptoms and other diagnostic challenges lead to underdiagnosis of cardiac amyloidosis (CA). Artificial intelligence (AI) could help address these challenges, but a summary of the performance of these tools is lacking. This narrative revi...