AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Fitness Trackers

Showing 11 to 19 of 19 articles

Clear Filters

Feasibility of Reidentifying Individuals in Large National Physical Activity Data Sets From Which Protected Health Information Has Been Removed With Use of Machine Learning.

JAMA network open
IMPORTANCE: Despite data aggregation and removal of protected health information, there is concern that deidentified physical activity (PA) data collected from wearable devices can be reidentified. Organizations collecting or distributing such data s...

Modeling long-term human activeness using recurrent neural networks for biometric data.

BMC medical informatics and decision making
BACKGROUND: With the invention of fitness trackers, it has been possible to continuously monitor a user's biometric data such as heart rates, number of footsteps taken, and amount of calories burned. This paper names the time series of these three ty...

Measuring Functional Arm Movement after Stroke Using a Single Wrist-Worn Sensor and Machine Learning.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND AND PURPOSE: Trials of restorative therapies after stroke and clinical rehabilitation require relevant and objective efficacy end points; real-world upper extremity (UE) functional use is an attractive candidate. We present a novel, inexpe...

Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking.

Journal of biomechanics
The aim of this study was to investigate if a machine learning algorithm utilizing triaxial accelerometer, gyroscope, and magnetometer data from an inertial motion unit (IMU) could detect surface- and age-related differences in walking. Seventeen old...

Cricket fast bowling detection in a training setting using an inertial measurement unit and machine learning.

Journal of sports sciences
Fast bowlers are at a high risk of overuse injuries. There are specific bowling frequency ranges known to have negative or protective effects on fast bowlers. Inertial measurement units (IMUs) can classify movements in sports, however, some commercia...

A Machine Learning Approach to Classifying Self-Reported Health Status in a Cohort of Patients With Heart Disease Using Activity Tracker Data.

IEEE journal of biomedical and health informatics
Constructing statistical models using personal sensor data could allow for tracking health status over time, thereby enabling the possibility of early intervention. The goal of this study was to use machine learning algorithms to classify patient-rep...

Detection of Flares by Decrease in Physical Activity, Collected Using Wearable Activity Trackers in Rheumatoid Arthritis or Axial Spondyloarthritis: An Application of Machine Learning Analyses in Rheumatology.

Arthritis care & research
OBJECTIVE: Flares in rheumatoid arthritis (RA) and axial spondyloarthritis (SpA) may influence physical activity. The aim of this study was to assess longitudinally the association between patient-reported flares and activity-tracker-provided steps p...

Profiling movement behaviours in pre-school children: A self-organised map approach.

Journal of sports sciences
Application of machine learning techniques has the potential to yield unseen insights into movement and permits visualisation of complex behaviours and tangible profiles. The aim of this study was to identify profiles of relative motor competence (MC...

Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.

Medicine and science in sports and exercise
UNLABELLED: Machine learning classification models for accelerometer data are potentially more accurate methods to measure physical activity in young children than traditional cut point methods. However, existing algorithms have been trained on labor...