AIMC Topic: Glycated Hemoglobin

Clear Filters Showing 31 to 40 of 80 articles

Implementation of five machine learning methods to predict the 52-week blood glucose level in patients with type 2 diabetes.

Frontiers in endocrinology
OBJECTIVE: For the patients who are suffering from type 2 diabetes, blood glucose level could be affected by multiple factors. An accurate estimation of the trajectory of blood glucose is crucial in clinical decision making. Frequent glucose measurem...

Causal deep learning reveals the comparative effectiveness of antihyperglycemic treatments in poorly controlled diabetes.

Nature communications
Type-2 diabetes is associated with severe health outcomes, the effects of which are responsible for approximately 1/4 of the total healthcare spending in the United States (US). Current treatment guidelines endorse a massive number of potential anti-...

Longitudinal deep learning clustering of Type 2 Diabetes Mellitus trajectories using routinely collected health records.

Journal of biomedical informatics
Type 2 diabetes mellitus (T2DM) is a highly heterogeneous chronic disease with different pathophysiological and genetic characteristics affecting its progression, associated complications and response to therapies. The advances in deep learning (DL) ...

Predicting poor glycemic control during Ramadan among non-fasting patients with diabetes using artificial intelligence based machine learning models.

Diabetes research and clinical practice
AIMS: This study aims to predict poor glycemic control during Ramadan among non-fasting patients with diabetes using machine learning models.

90% Accuracy for Photoplethysmography-Based Non-Invasive Blood Glucose Prediction by Deep Learning with Cohort Arrangement and Quarterly Measured HbA1c.

Sensors (Basel, Switzerland)
Previously published photoplethysmography-(PPG) based non-invasive blood glucose (NIBG) measurements have not yet been validated over 500 subjects. As illustrated in this work, we increased the number subjects recruited to 2538 and found that the pre...

Generalizability of heterogeneous treatment effects based on causal forests applied to two randomized clinical trials of intensive glycemic control.

Annals of epidemiology
Purpose Machine learning is an attractive tool for identifying heterogeneous treatment effects (HTE) of interventions but generalizability of machine learning derived HTE remains unclear. We examined generalizability of HTE detected using causal fore...

An Artificial-Intelligence-Discovered Functional Ingredient, NRT_N0G5IJ, Derived from , Decreases HbA1c in a Prediabetic Population.

Nutrients
The prevalence of prediabetes is rapidly increasing, and this can lead to an increased risk for individuals to develop type 2 diabetes and associated diseases. Therefore, it is necessary to develop nutritional strategies to maintain healthy glucose l...

Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning.

BMC endocrine disorders
INTRODUCTION: Recent studies have reported that HbA1c and lipid variability is useful for risk stratification in diabetes mellitus. The present study evaluated the predictive value of the baseline, subsequent mean of at least three measurements and v...

Catch Me if You Can: Acute Events Hidden in Structured Chronic Disease Diagnosis Descriptions Show Detectable Recording Patterns in EHR.

AMIA ... Annual Symposium proceedings. AMIA Symposium
Our previous research shows that structured cancer DX description data accuracy varied across electronic health record (EHR) segments (e.g. encounter DX, problem list, etc.). We provide initial evidence corroborating these findings in EHRs from patie...