AIMC Topic: Hippocampus

Clear Filters Showing 41 to 50 of 195 articles

Comparative assessment of established and deep learning-based segmentation methods for hippocampal volume estimation in brain magnetic resonance imaging analysis.

NMR in biomedicine
In this study, our objective was to assess the performance of two deep learning-based hippocampal segmentation methods, SynthSeg and TigerBx, which are readily available to the public. We contrasted their performance with that of two established tech...

Minicolumn-Based Episodic Memory Model With Spiking Neurons, Dendrites and Delays.

IEEE transactions on neural networks and learning systems
Episodic memory is fundamental to the brain's cognitive function, but how neuronal activity is temporally organized during its encoding and retrieval is still unknown. In this article, combining hippocampus structure with a spiking neural network (SN...

Uncovering Predictors of Low Hippocampal Volume: Evidence from a Large-Scale Machine-Learning-Based Study in the UK Biobank.

Neuroepidemiology
INTRODUCTION: Hippocampal atrophy is an established biomarker for conversion from the normal ageing process to developing cognitive impairment and dementia. This study used a novel hypothesis-free machine-learning approach, to uncover potential risk ...

Deep learning-based, fully automated, pediatric brain segmentation.

Scientific reports
The purpose of this study was to demonstrate the performance of a fully automated, deep learning-based brain segmentation (DLS) method in healthy controls and in patients with neurodevelopmental disorders, SCN1A mutation, under eleven. The whole, cor...

High-resolution CMOS-based biosensor for assessing hippocampal circuit dynamics in experience-dependent plasticity.

Biosensors & bioelectronics
Experiential richness creates tissue-level changes and synaptic plasticity as patterns emerge from rhythmic spatiotemporal activity of large interconnected neuronal assemblies. Despite numerous experimental and computational approaches at different s...

Development and validation of an automatic classification algorithm for the diagnosis of Alzheimer's disease using a high-performance interpretable deep learning network.

European radiology
OBJECTIVES: To develop and validate an automatic classification algorithm for diagnosing Alzheimer's disease (AD) or mild cognitive impairment (MCI).

Stereology neuron counts correlate with deep learning estimates in the human hippocampal subregions.

Scientific reports
Hippocampal subregions differ in specialization and vulnerability to cell death. Neuron death and hippocampal atrophy have been a marker for the progression of Alzheimer's disease. Relatively few studies have examined neuronal loss in the human brain...

An explainable artificial intelligence approach to spatial navigation based on hippocampal circuitry.

Neural networks : the official journal of the International Neural Network Society
Learning to navigate a complex environment is not a difficult task for a mammal. For example, finding the correct way to exit a maze following a sequence of cues, does not need a long training session. Just a single or a few runs through a new enviro...

Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples.

EBioMedicine
BACKGROUND: Dementia's diagnostic protocols are mostly based on standardised neuroimaging data collected in the Global North from homogeneous samples. In other non-stereotypical samples (participants with diverse admixture, genetics, demographics, MR...

Neural learning rules for generating flexible predictions and computing the successor representation.

eLife
The predictive nature of the hippocampus is thought to be useful for memory-guided cognitive behaviors. Inspired by the reinforcement learning literature, this notion has been formalized as a predictive map called the successor representation (SR). T...