AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Hospital Mortality

Showing 201 to 210 of 323 articles

Clear Filters

Predicting in-hospital mortality of patients with febrile neutropenia using machine learning models.

International journal of medical informatics
BACKGROUND: Febrile neutropenia (FN) has been associated with high mortality among adults with cancer. Current systems for early detection of inpatient FN mortality are based on scoring indexes that require intensive physicians' subjective evaluation...

A generalizable 29-mRNA neural-network classifier for acute bacterial and viral infections.

Nature communications
Improved identification of bacterial and viral infections would reduce morbidity from sepsis, reduce antibiotic overuse, and lower healthcare costs. Here, we develop a generalizable host-gene-expression-based classifier for acute bacterial and viral ...

Comparison of Prediction Model Performance Updating Protocols: Using a Data-Driven Testing Procedure to Guide Updating.

AMIA ... Annual Symposium proceedings. AMIA Symposium
In evolving clinical environments, the accuracy of prediction models deteriorates over time. Guidance on the design of model updating policies is limited, and there is limited exploration of the impact of different policies on future model performanc...

Using a machine learning approach to predict mortality in critically ill influenza patients: a cross-sectional retrospective multicentre study in Taiwan.

BMJ open
OBJECTIVES: Current mortality prediction models used in the intensive care unit (ICU) have a limited role for specific diseases such as influenza, and we aimed to establish an explainable machine learning (ML) model for predicting mortality in critic...

Prehospital triage of acute aortic syndrome using a machine learning algorithm.

The British journal of surgery
BACKGROUND: Acute aortic syndrome (AAS) comprises a complex and potentially fatal group of conditions requiring emergency specialist management. The aim of this study was to build a prediction algorithm to assist prehospital triage of AAS.

Prospective and External Evaluation of a Machine Learning Model to Predict In-Hospital Mortality of Adults at Time of Admission.

JAMA network open
IMPORTANCE: The ability to accurately predict in-hospital mortality for patients at the time of admission could improve clinical and operational decision-making and outcomes. Few of the machine learning models that have been developed to predict in-h...

Multicenter validation of a machine-learning algorithm for 48-h all-cause mortality prediction.

Health informatics journal
In order to evaluate mortality predictions based on boosted trees, this retrospective study uses electronic medical record data from three academic health centers for inpatients 18 years or older with at least one observation of each vital sign. Pred...