AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Hospital Mortality

Showing 51 to 60 of 322 articles

Clear Filters

Comparing ensemble learning algorithms and severity of illness scoring systems in cardiac intensive care units: a retrospective study.

Einstein (Sao Paulo, Brazil)
BACKGROUND: Beatriz Nistal-Nuño designed a machine learning system type of ensemble learning for patients undergoing cardiac surgery and intensive care unit cardiology patients, based on sequences of cardiovascular physiological measurements and othe...

Explainable machine learning and online calculators to predict heart failure mortality in intensive care units.

ESC heart failure
AIMS: This study aims to develop explainable machine learning models and clinical tools for predicting mortality in patients in the intensive care unit (ICU) with heart failure (HF).

Clinical evaluation of a machine learning-based early warning system for patient deterioration.

CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne
BACKGROUND: The implementation and clinical impact of machine learning-based early warning systems for patient deterioration in hospitals have not been well described. We sought to describe the implementation and evaluation of a multifaceted, real-ti...

Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study.

Cardiovascular diabetology
BACKGROUND: Heart failure combined with hypertension is a major contributor for elderly patients (≥ 65 years) to in-hospital mortality. However, there are very few models to predict in-hospital mortality in such elderly patients. We aimed to develop ...

Machine learning adjusted sequential CUSUM-analyses are superior to cross-sectional analysis of excess mortality after surgery.

International journal of medical informatics
BACKGROUND: The assessment of clinical outcome quality, particularly in surgery, is crucial for healthcare improvement. Traditional cross-sectional analyses often fall short in timely and systematic identification of clinical quality issues. This stu...

Random Forest Prognostication of Survival and 6-Month Outcome in Pediatric Patients Following Decompressive Craniectomy for Traumatic Brain Injury.

World neurosurgery
BACKGROUND: There is a dearth of literature regarding prognostic and predictive factors for outcome following pediatric decompressive craniectomy (DC) performed after traumatic brain injury (TBI). The aim of this study was to develop a random forest ...

Development and validation of a sepsis risk index supporting early identification of ICU-acquired sepsis: an observational study.

Anaesthesia, critical care & pain medicine
BACKGROUND: Sepsis is a threat to global health, and domestically is the major cause of in-hospital mortality. Due to increases in inpatient morbidity and mortality resulting from sepsis, healthcare providers (HCPs) would accrue significant benefits ...

Development and validation of the PHM-CPA model to predict in-hospital mortality for cirrhotic patients with acute kidney injury.

Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver
BACKGROUND: The presence of acute kidney injury (AKI) significantly increases in-hospital mortality risk for cirrhotic patients. Early prognosis prediction for these patients is crucial. We aimed to develop and validate a machine learning model for i...

A Machine Learning-derived Risk Score Improves Prediction of Outcomes After LVAD Implantation: An Analysis of the INTERMACS Database.

Journal of cardiac failure
BACKGROUND: Significant variability in outcomes after left ventricular assist device (LVAD) implantation emphasize the importance of accurately assessing patients' risk before surgery. This study assesses the Machine Learning Assessment of Risk and E...