RATIONALE AND OBJECTIVES: The RANO-BM criteria, which employ a one-dimensional measurement of the largest diameter, are imperfect due to the fact that the lesion volume is neither isotropic nor homogeneous. Furthermore, this approach is inherently ti...
Journal of magnetic resonance imaging : JMRI
Jan 9, 2025
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5-year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second-leading cause of cancer-related death. The r...
RATIONALE AND OBJECTIVES: To assess the performance of an industry-developed deep learning (DL) algorithm to reconstruct low-resolution Cartesian T1-weighted dynamic contrast-enhanced (T1w) and T2-weighted turbo-spin-echo (T2w) sequences and compare ...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Jan 8, 2025
Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment tra...
PROBLEM: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manma...
AJNR. American journal of neuroradiology
Jan 8, 2025
BACKGROUND AND PURPOSE: DWI is crucial for detecting infarction stroke. However, its spatial resolution is often limited, hindering accurate lesion visualization. Our aim was to evaluate the image quality and diagnostic confidence of deep learning (D...
AJNR. American journal of neuroradiology
Jan 8, 2025
BACKGROUND AND PURPOSE: Idiopathic normal pressure hydrocephalus (iNPH) is reversible dementia that is underdiagnosed. The purpose of this study was to develop an automated diagnostic method for iNPH using artificial intelligence techniques with a T1...
Machine learning is widely used in dentistry nowadays, offering efficient solutions for diagnosing dental diseases, such as periodontitis and gingivitis. Most existing methods for diagnosing periodontal diseases follow a two-stage process. Initially,...
Histopathological analysis of whole slide images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fail to capture the intricate spatial dependencies inherent i...
In the present scenario, cancerous tumours are common in humans due to major changes in nearby environments. Skin cancer is a considerable disease detected among people. This cancer is the uncontrolled evolution of atypical skin cells. It occurs when...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.