BACKGROUND: The authors previously developed an artificial intelligence (AI) to assist cytologists in the evaluation of digital whole-slide images (WSIs) generated from bile duct brushing specimens. The aim of this trial was to assess the efficiency ...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Aug 29, 2024
This study presents an innovative hybrid deep learning (DL) framework that reformulates the sagittal MRI-based anterior cruciate ligament (ACL) tear classification task as a novelty detection problem to tackle class imbalance. We introduce a highly d...
OBJECTIVES: The aim of this study was to evaluate the use of a multicontrast deep learning (DL)-reconstructed 4-fold accelerated 2-dimensional (2D) turbo spin echo (TSE) protocol and the feasibility of 3-dimensional (3D) superresolution reconstructio...
BACKGROUND: Brain metastases (BMs) represents a severe neurological complication stemming from cancers originating from various sources. It is a highly challenging clinical task to accurately distinguish the pathological subtypes of brain metastatic ...
Multi-task learning (MTL) methods are widely applied in breast imaging for lesion area perception and classification to assist in breast cancer diagnosis and personalized treatment. A typical paradigm of MTL is the shared-backbone network architectur...
Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME) are vision related complications prominently found in diabetic patients. The early identification of DR/DME grades facilitates the devising of an appropriate treatment plan, which ultimately ...
RATIONALE AND OBJECTIVE: A single-shot T2-weighted deep-learning-based image reconstruction (DL-HASTE) has been recently developed allowing for shorter acquisition time than conventional half-Fourier acquisition single-shot turbo-spin echo (HASTE). T...
The international journal of cardiovascular imaging
Aug 27, 2024
This study was conducted to develop and validate a deep learning model for delineating intravascular ultrasound (IVUS) images of coronary arteries.Using a total of 1240 40-MHz IVUS pullbacks with 191,407 frames, the model for lumen and external elast...
In deep-learning-based medical image segmentation tasks, semi-supervised learning can greatly reduce the dependence of the model on labeled data. However, existing semi-supervised medical image segmentation methods face the challenges of object bound...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.