AIMC Topic: Intensive Care Units

Clear Filters Showing 91 to 100 of 694 articles

Convolutional long short-term memory neural network integrated with classifier in classifying type of asynchrony breathing in mechanically ventilated patients.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Asynchronous breathing (AB) occurs when a mechanically ventilated patient's breathing does not align with the mechanical ventilator (MV). Asynchrony can negatively impact recovery and outcome, and/or hinder MV management. A ...

Impact of Sepsis Onset Timing on All-Cause Mortality in Acute Pancreatitis: A Multicenter Retrospective Cohort Study.

Journal of intensive care medicine
BackgroundSepsis complicates acute pancreatitis (AP), increasing mortality risk. Few studies have examined how sepsis and its onset timing affect mortality in AP. This study evaluates the association between sepsis occurrence and all-cause mortality ...

Development and validation of interpretable machine learning models for triage patients admitted to the intensive care unit.

PloS one
OBJECTIVES: Developing and validating interpretable machine learning (ML) models for predicting whether triaged patients need to be admitted to the intensive care unit (ICU).

An effective multi-step feature selection framework for clinical outcome prediction using electronic medical records.

BMC medical informatics and decision making
BACKGROUND: Identifying key variables is essential for developing clinical outcome prediction models based on high-dimensional electronic medical records (EMR). However, despite the abundance of feature selection (FS) methods available, challenges re...

Enhancing machine learning performance in cardiac surgery ICU: Hyperparameter optimization with metaheuristic algorithm.

PloS one
The healthcare industry is generating a massive volume of data, promising a potential goldmine of information that can be extracted through machine learning (ML) techniques. The Intensive Care Unit (ICU) stands out as a focal point within hospitals a...

Methods for estimating resting energy expenditure in intensive care patients: A comparative study of predictive equations with machine learning and deep learning approaches.

Computer methods and programs in biomedicine
BACKGROUND: Accurate estimation of resting energy expenditure (REE) is critical for guiding nutritional therapy in critically ill patients. While indirect calorimetry (IC) is the gold standard for REE measurement, it is not routinely feasible in clin...

Capturing Requirements for a Data Annotation Tool for Intensive Care: Experimental User-Centered Design Study.

JMIR human factors
BACKGROUND: Increasing use of computational methods in health care provides opportunities to address previously unsolvable problems. Machine learning techniques applied to routinely collected data can enhance clinical tools and improve patient outcom...

Development and usability evaluation of a nurse-led clinical decision support system (AI-AntiDelirium) for management of intensive care unit delirium: A mixed methods study.

Applied nursing research : ANR
BACKGROUND: Clinical decision support systems (CDSS) have been identified to aid clinical decision-making, but few studies focus on the application of CDSS in intensive care unit (ICU) delirium, and particularly usability testing is not employed. We ...

Multimodal convolutional neural networks for the prediction of acute kidney injury in the intensive care.

International journal of medical informatics
Increased monitoring of health-related data for ICU patients holds great potential for the early prediction of medical outcomes. Research on whether the use of clinical notes and concepts from knowledge bases can improve the performance of prediction...

The Liver Intensive Care Unit.

Clinics in liver disease
Major advances in managing critically ill patients with liver disease have improved their prognosis and access to intensive care facilities. Acute-on-chronic liver failure (ACLF) is now a well-defined disease and these patients can be fast-tracked fo...