AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Intensive Care Units

Showing 131 to 140 of 603 articles

Clear Filters

Development of machine learning models predicting mortality using routinely collected observational health data from 0-59 months old children admitted to an intensive care unit in Bangladesh: critical role of biochemistry and haematology data.

BMJ paediatrics open
INTRODUCTION: Treatment in the intensive care unit (ICU) generates complex data where machine learning (ML) modelling could be beneficial. Using routine hospital data, we evaluated the ability of multiple ML models to predict inpatient mortality in a...

Human-AI Teaming in Critical Care: A Comparative Analysis of Data Scientists' and Clinicians' Perspectives on AI Augmentation and Automation.

Journal of medical Internet research
BACKGROUND: Artificial intelligence (AI) holds immense potential for enhancing clinical and administrative health care tasks. However, slow adoption and implementation challenges highlight the need to consider how humans can effectively collaborate w...

ICURE: Intensive care unit (ICU) risk evaluation for 30-day mortality. Developing and evaluating a multivariable machine learning prediction model for patients admitted to the general ICU in Sweden.

Acta anaesthesiologica Scandinavica
BACKGROUND: A prediction model that estimates mortality at admission to the intensive care unit (ICU) is of potential benefit to both patients and society. Logistic regression models like Simplified Acute Physiology Score 3 (SAPS 3) and APACHE are th...

Retrospective analysis of interpretable machine learning in predicting ICU thrombocytopenia in geriatric ICU patients.

Scientific reports
We developed an interpretable machine learning algorithm that prospectively predicts the risk of thrombocytopenia in older critically ill patients during their stay in the intensive care unit (ICU), ultimately aiding clinical decision-making and impr...

Development and Validation of a Machine Learning COVID-19 Veteran (COVet) Deterioration Risk Score.

Critical care explorations
BACKGROUND AND OBJECTIVE: To develop the COVid Veteran (COVet) score for clinical deterioration in Veterans hospitalized with COVID-19 and further validate this model in both Veteran and non-Veteran samples. No such score has been derived and validat...

ARDSFlag: an NLP/machine learning algorithm to visualize and detect high-probability ARDS admissions independent of provider recognition and billing codes.

BMC medical informatics and decision making
BACKGROUND: Despite the significance and prevalence of acute respiratory distress syndrome (ARDS), its detection remains highly variable and inconsistent. In this work, we aim to develop an algorithm (ARDSFlag) to automate the diagnosis of ARDS based...

Deriving Automated Device Metadata From Intracranial Pressure Waveforms: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury ICU Physiology Cohort Analysis.

Critical care explorations
IMPORTANCE: Treatment for intracranial pressure (ICP) has been increasingly informed by machine learning (ML)-derived ICP waveform characteristics. There are gaps, however, in understanding how ICP monitor type may bias waveform characteristics used ...

The impact of AI-based decision support systems on nursing workflows in critical care units.

International nursing review
AIM: This research examines the effects of artificial intelligence (AI)-based decision support systems (DSS) on the operational processes of nurses in critical care units (CCU) located in Amman, Jordan.

A privacy-preserving platform oriented medical healthcare and its application in identifying patients with candidemia.

Scientific reports
Federated learning (FL) has emerged as a significant method for developing machine learning models across multiple devices without centralized data collection. Candidemia, a critical but rare disease in ICUs, poses challenges in early detection and t...

Development and validation of machine learning models to predict MDRO colonization or infection on ICU admission by using electronic health record data.

Antimicrobial resistance and infection control
BACKGROUND: Multidrug-resistant organisms (MDRO) pose a significant threat to public health. Intensive Care Units (ICU), characterized by the extensive use of antimicrobial agents and a high prevalence of bacterial resistance, are hotspots for MDRO p...