AIMC Topic: Length of Stay

Clear Filters Showing 31 to 40 of 397 articles

Machine Learning Algorithms Exceed Comorbidity Indices in Prediction of Short-Term Complications After Hip Fracture Surgery.

The Journal of the American Academy of Orthopaedic Surgeons
BACKGROUND: Hip fractures are among the most morbid acute orthopaedic injuries often due to accompanying patient frailty. The purpose of this study was to determine the reliability of assessing surgical risk after hip fracture through machine learnin...

Predicting stroke severity of patients using interpretable machine learning algorithms.

European journal of medical research
BACKGROUND: Stroke is a significant global health concern, ranking as the second leading cause of death and placing a substantial financial burden on healthcare systems, particularly in low- and middle-income countries. Timely evaluation of stroke se...

Using AI to Predict Patients' Length of Stay: PACU Staff's Needs and Expectations for Developing and Implementing an AI System.

Journal of nursing management
The need for innovative technology in healthcare is apparent due to challenges posed by the lack of resources. This study investigates the adoption of AI-based systems, specifically within the postanesthesia care unit (PACU). The aim of the study wa...

Development and external validation of an interpretable machine learning model for the prediction of intubation in the intensive care unit.

Scientific reports
Given the limited capacity to accurately determine the necessity for intubation in intensive care unit settings, this study aimed to develop and externally validate an interpretable machine learning model capable of predicting the need for intubation...

Clinical and socioeconomic predictors of hospital use and emergency department visits among children with medical complexity: A machine learning approach using administrative data.

PloS one
OBJECTIVES: The primary objective of this study was to identify clinical and socioeconomic predictors of hospital and ED use among children with medical complexity within 1 and 5 years of an initial discharge between 2010 and 2013. A secondary object...

Machine Learning Model for Predicting Risk Factors of Prolonged Length of Hospital Stay in Patients with Aortic Dissection: a Retrospective Clinical Study.

Journal of cardiovascular translational research
The length of hospital stay (LOS) is crucial for assessing medical service quality. This study aimed to develop machine learning models for predicting risk factors of prolonged LOS in patients with aortic dissection (AD). The data of 516 AD patients ...

Machine learning-augmented interventions in perioperative care: a systematic review and meta-analysis.

British journal of anaesthesia
BACKGROUND: We lack evidence on the cumulative effectiveness of machine learning (ML)-driven interventions in perioperative settings. Therefore, we conducted a systematic review to appraise the evidence on the impact of ML-driven interventions on per...

Predicting extended hospital stay following revision total hip arthroplasty: a machine learning model analysis based on the ACS-NSQIP database.

Archives of orthopaedic and trauma surgery
INTRODUCTION: Prolonged length of stay (LOS) following revision total hip arthroplasty (THA) can lead to increased healthcare costs, higher rates of readmission, and lower patient satisfaction. In this study, we investigated the predictive power of m...