PURPOSE: To develop convolutional neural network (CNN) models for differentiating intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) and predicting histopathological grade of HCC.
BACKGROUND: Probe electrospray ionization-mass spectrometry (PESI-MS) can rapidly visualize mass spectra of small, surgically obtained tissue samples, and is a promising novel diagnostic tool when combined with machine learning which discriminates ma...
Tissue micro-morphological abnormalities and interrelated quantitative data can provide immediate evidences for tumorigenesis and metastasis in microenvironment. However, the multiscale three-dimensional nondestructive pathological visualization, mea...
OBJECTIVE: To compare the performance of the deep learning-based lesion detection algorithm (DLLD) in detecting liver metastasis with that of radiologists.
Journal of magnetic resonance imaging : JMRI
Feb 8, 2021
BACKGROUND: Microvascular invasion (MVI) is a critical prognostic factor of hepatocellular carcinoma (HCC). However, it could only be obtained by postoperative histological examination.
Recurrence risk stratification of patients undergoing primary surgical resection for hepatocellular carcinoma (HCC) is an area of active investigation, and several staging systems have been proposed to optimize treatment strategies. However, as many ...
The clinical needs of rapidly screening liver cancer in large populations have asked for a facile and low-cost point-of-care testing (POCT) method. We present a nanoplasmonics biosensing chip (NBC) that would empower antibody-free detection with simp...
OBJECTIVE: To investigate the application of machine learning-based ultrasound radiomics in preoperative classification of primary and metastatic liver cancer.
BACKGROUND: Surface-guided radiation therapy can be used to continuously monitor a patient's surface motions during radiotherapy by a non-irradiating, noninvasive optical surface imaging technique. In this study, machine learning methods were applied...